113 research outputs found
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
Search for Neutrinoless Double- β Decay in Ge 76 with the Majorana Demonstrator
The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-β decay in Ge76. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in Ge76) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at Qββ and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9×1025 yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0-2.5+3.1 counts/(FWHM t yr)
An Outside-In Switch in Integrin Signaling Caused by Chemical and Mechanical Signals in Reactive Astrocytes.
Astrocyte reactivity is associated with poor repair capacity after injury to the brain, where chemical and physical changes occur in the damaged zone. Astrocyte surface proteins, such as integrins, are upregulated, and the release of pro-inflammatory molecules and extracellular matrix (ECM) proteins upon damage generate a stiffer matrix. Integrins play an important role in triggering a reactive phenotype in astrocytes, and we have reported that α <sub>V</sub> β <sub>3</sub> Integrin binds to the Thy-1 (CD90) neuronal glycoprotein, increasing astrocyte contractility and motility. Alternatively, α <sub>V</sub> β <sub>3</sub> Integrin senses mechanical forces generated by the increased ECM stiffness. Until now, the association between the α <sub>V</sub> β <sub>3</sub> Integrin mechanoreceptor response in astrocytes and changes in their reactive phenotype is unclear. To study the response to combined chemical and mechanical stress, astrocytes were stimulated with Thy-1-Protein A-coated magnetic beads and exposed to a magnetic field to generate mechanical tension. We evaluated the effect of such stimulation on cell adhesion and contraction. We also assessed traction forces and their effect on cell morphology, and integrin surface expression. Mechanical stress accelerated the response of astrocytes to Thy-1 engagement of integrin receptors, resulting in cell adhesion and contraction. Astrocyte contraction then exerted traction forces onto the ECM, inducing faster cell contractility and higher traction forces than Thy-1 alone. Therefore, cell-extrinsic chemical and mechanical signals regulate in an outside-in manner, astrocyte reactivity by inducing integrin upregulation, ligation, and signaling events that promote cell contraction. These changes in turn generate cell-intrinsic signals that increase traction forces exerted onto the ECM (inside-out). This study reveals α <sub>V</sub> β <sub>3</sub> Integrin mechanoreceptor as a novel target to regulate the harmful effects of reactive astrocytes in neuronal healing
Leaves from tropical trees as protein supplements in diets for sheep
The effects of forage supplement and level of maize grain (Zea mays L.) offered on intake, digestibility, N balance, and rate of gain were determined for rams fed teff straw (Eragrostis abyssinica). Supplements (leaves from five trees, Faidherbia albida, Carissa edulis, Dichrostachys cinerea, Leucaena leucocephala, and Sesbania sesban, or chopped alfalfa hay, Medicago sativa) provided 40 g per day of crude protein. Maize grain was supplemented to half of the sheep at 100 g per day. Rams fed leaves of F. albida, L. leucocephala, S. sesban, and the alfalfa hay gained 49 g per day with maize and 23 g per day without maize. Higher content of proanthocyanidins and related polyphenols in F. albida had no detrimental effect on N balance and rate of gain (P < 0.05) in comparison to alfalfa. The high content of proanthocyanidins and related polyphenols in C. edulis and D. cinerea resulted in low intake, digestibility, and rate of gain (6 g day-1) when fed with maize, and high weight loss (-63 g day-1) without maize
- …