38 research outputs found

    Demographic and Clinical Factors Associated with Response to Smallpox Vaccine in Preimmunized Volunteers

    Get PDF
    CONTEXT: In March 2003, the French Ministry of Health implemented a program on preparedness and response to a biological attack using smallpox as weapon. This program included the establishment of a preoutbreak national team that could be revaccinated against smallpox. OBJECTIVE: To identify demographic and clinical factors associated with vaccination success defined as the presence of a pustule at the inoculation site at day 8 (days 7-9), with an undiluted vaccinia virus derived from a Lister strain among preimmunized volunteers. VOLUNTEERS AND METHODS: From March 2003 to November 2006, we have studied prospectively 226 eligible volunteers. Demographic data were recorded for each volunteer (age, sex, number of previously smallpox vaccinations and date of the last vaccination). Smallpox vaccine adverse reactions were diagnosed on the basis of clinical examination performed at days 0, 7, 14, 21 and 28 after revaccination. RESULTS: A total of 226 volunteers (sex ratio H/F = 2.7) were revaccinated. Median age was 45 years (range: 27-63 yrs). All volunteers completed follow-up. Median number of vaccinations before revaccination was 2 (range: 1-8). The median delay between time of the study and the last vaccination was 29 years (range; 18-60 yrs). Sixty-one volunteers (27%) experienced one (n = 40) or more (n = 21) minor side effects during the 2-14 days after revaccination. Successful vaccination was noted in 216/226 volunteers (95.6%) at day 8 and the median of the pustule diameter was 5 mm (range: 1-20 mm). Size of the pustule at day 8 was correlated with age (p = 0.03) and with the presence of axillary adenopathy after revaccination (p = 0.007). Sex, number of prior vaccinations, delay between the last vaccination and revaccination, and local or systemic side effects with the exception of axillary adenopathy, were not correlated with the size of the pustule at day 8. CONCLUSIONS: Previously vaccinated volunteers can be successfully revaccinated with the Lister strain

    Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice

    Get PDF
    Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV) as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE) and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+) cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+) Arg-1(+) myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+) Arg-1(+) phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain

    Preferential Amplification of CD8 Effector-T Cells after Transcutaneous Application of an Inactivated Influenza Vaccine: A Randomized Phase I Trial

    Get PDF
    Background: Current conventional vaccination approaches do not induce potent CD8 T-cell responses for fighting mostly variable viral diseases such as influenza, avian influenza viruses or HIV. Following our recent study on vaccine penetration by targeting of vaccine to human hair follicular ducts surrounded by Langerhans cells, we tested in the first randomized Phase-Ia trial based on hair follicle penetration (namely transcutaneous route) the induction of virus-specific CD8 T cell responses. Methods and Findings: We chose the inactivated influenza vaccine – a conventional licensed tetanus/influenza (TETAGRIP®) vaccine – to compare the safety and immunogenicity of transcutaneous (TC) versus IM immunization in two randomized controlled, multi-center Phase I trials including 24 healthy-volunteers and 12 HIV-infected patients. Vaccination was performed by application of inactivated influenza vaccine according to a standard protocol allowing the opening of the hair duct for the TC route or needle-injection for the IM route. We demonstrated that the safety of the two routes was similar. We showed the superiority of TC application, but not the IM route, to induce a significant increase in influenza-specific CD8 cytokine-producing cells in healthy-volunteers and in HIV-infected patients. However, these routes did not differ significantly for the induction of influenza-specific CD4 responses, and neutralizing antibodies were induced only by the IM route. The CD8 cell response is thus the major immune response observed after TC vaccination. Conclusions: This Phase Ia clinical trial (Manon05) testing an anti-influenza vaccine demonstrated that vaccines designed for antibody induction by the IM route, generate vaccine-specific CD8 T cells when administered transcutaneously. These results underline the necessity of adapting vaccination strategies to control complex infectious diseases when CD8 cellular responses are crucial. Our work opens up a key area for the development of preventive and therapeutic vaccines for diseases in which CD8 cells play a crucial role

    Acquired immune responses to the seasonal trivalent influenza vaccination in COPD

    No full text
    International audienceEpidemiological data suggest that influenza vaccination protects against all-cause mortality in chronic obstructive pulmonary disease (COPD) patients. However, recent work has suggested there is a defect in the ability of some COPD patients to mount an adequate humoral response to influenza vaccination. The aim of our study was to investigate humoral and cell-mediated vaccine responses to the seasonal trivalent influenza vaccination (TIV) in COPD subjects and healthy controls. Forty-seven subjects were enrolled into the study; 23 COPD patients, 13 age-matched healthy controls (HC ≥ 50) and 11 young healthy control subjects (YC ≤ 40). Serum and peripheral blood mononuclear cells (PBMC) were isolated pre-TIV vaccination and at days 7 and 28 and 6 months post-vaccine for haemagglutinin inhibition (HAI) titre, antigen-specific T cell and antibody-secreting cell analysis. The kinetics of the vaccine response were similar between YC, HC and COPD patients and there was no significant difference in antibody titres between these groups at 28 days post-vaccine. As we observed no disease-dependent differences in either humoral or cellular responses, we investigated if there was any association of these measures with age. H1N1 (r = -0·4253, P = 0·0036) and influenza B (r = -0·344, P = 0·0192) antibody titre at 28 days negatively correlated with age, as did H1N1-specific CD4+ T helper cells (r = -0·4276, P = 0·0034). These results suggest that age is the primary determinant of response to trivalent vaccine and that COPD is not a driver of deficient responses per se. These data support the continued use of the yearly trivalent vaccine as an adjunct to COPD disease management

    Modulation of interleukin-7 receptor expression characterizes differentiation of CD8 T cells specific for HIV, EBV and CMV.

    No full text
    OBJECTIVES: To further understand differentiation and homeostasis of CD8 T cells specific for HIV, Epstein-Barr Virus (EBV) and cytomegalovirus (CMV) during HIV infection, we investigated interleukin-7 receptor alpha (IL-7Ralpha) expression on those virus-specific T cells. METHODS: Microarrays and cytometry analyses were performed on peripheral blood mononuclear cells (PBMC), total and tetramer-binding virus-specific CD8 T cells from 66 HIV-infected patients. RESULTS: Microarray analysis revealed reduced levels of IL-7Ralpha and increased levels of perforin with disease progression in total PBMC. This loss of IL-7Ralpha expression was observed on CD8 T cells and was inversely related to perforin expression. The relative expression of both molecules defined three new subsets: IL-7Ralpha(pos)Perforin(neg); IL-7Ralpha(loneg)Perforin(lo); and IL-7Ralpha(loneg)Perforin(hi) corresponding to naive and effector-memory CD8 differentiation, as assessed by CD45RA/CD11a. The IL-7Ralpha expression decreased along the CD8 differentiation pathway defined by CD27 and CD28. In contrast, IL-7Ralpha expression was down-modulated on all the CD8 T cells specific for HIV, EBV and CMV that were almost exclusively IL-7Ralpha(lo/neg)Perforin(lo) and was parallel with the CD27 expression. In addition, this low IL-7Ralpha expression on HIV-specific CD8 T cells was independent of virus load and T-cell activation and remained stable during the first 6 months of antiretroviral therapy despite successful control of HIV replication. CONCLUSION: The relative expression of IL-7Ralpha, perforin reveals new aspects of virus-specific CD8 T cell differentiation, independently of T-cell activation and virus load. This opens new perspectives for understanding homeostasis of those cells and immune-based therapeutic strategies

    NFκB activation by modified vaccinia virus as a novel strategy to enhance neutrophil migration and HIV-specific T-cell responses.

    No full text
    Neutrophils are antigen-transporting cells that generate vaccinia virus (VACV)-specific T-cell responses, yet how VACV modulates neutrophil recruitment and its significance in the immune response are unknown. We generated an attenuated VACV strain that expresses HIV-1 clade C antigens but lacks three specific viral genes (A52R, K7R, and B15R). We found that these genes act together to inhibit the NFκB signaling pathway. Triple ablation in modified virus restored NFκB function in macrophages. After virus infection of mice, NFκB pathway activation led to expression of several cytokines/chemokines that increased the migration of neutrophil populations (Nα and Nβ) to the infection site. Nβ cells displayed features of antigen-presenting cells and activated virus-specific CD8 T cells. Enhanced neutrophil trafficking to the infection site correlated with an increased T-cell response to HIV vector-delivered antigens. These results identify a mechanism for poxvirus-induced immune response and alternatives for vaccine vector design

    The immunological effects of intradermal particle-based vaccine delivery using a novel microinjection needle studied in a human skin explant model.

    No full text
    For intradermal (ID) immunisation, novel needle-based delivery systems have been proposed as a better alternative to the Mantoux method. However, the penetration depth of needles in the human skin and its effect on immune cells residing in the different layers of the skin has not been analyzed. A novel and user-friendly silicon microinjection needle (Bella-mu(TM)) has been developed, which allows for a perpendicular injection due to its short needle length (1.4-1.8 mm) and ultrashort bevel. We aimed to characterize the performance of this microinjection needle in the context of the delivery of a particle-based outer membrane vesicle (OMV) vaccine using an ex vivo human skin explant model. We compared the needles of 1.4 and 1.8 mm with the conventional Mantoux method to investigate the depth of vaccine injection and the capacity of the skin antigen-presenting cell (APC) to phagocytose the OMVs. The 1.4 mm needle deposited the antigen closer to the epidermis than the 1.8 mm needle or the Mantoux method. Consequently, activation of epidermal Langerhans cells was significantly higher as determined by dendrite shortening. We found that five different subsets of dermal APCs are able to phagocytose the OMV vaccine, irrespective of the device or injection method. ID delivery using the 1.4 mm needle of a OMV-based vaccine allowed epidermal and dermal APC targeting, with superior activation of Langerhans cells. This study indicates that the use of a microinjection needle improves the delivery of vaccines in the human skin

    Actualités en matière de recherche vaccinale. Compte-rendu de la 15e conférence annuelle sur la recherche vaccinale organisée par la National Foundation for Infectious Diseases

    No full text
    International audienceEvery year, the National Foundation for Infectious Diseases brings together more than 300 participants to review progress in vaccine research and development and identify the most promising avenues of research. These conferences are among the most important scientific meetings entirely dedicated to vaccine research for both humans and animals, and provide a mix of plenary sessions with invited presentations by acknowledged international experts, parallel sessions, poster sessions, and informal exchanges between experts and young researchers. During the Fifteenth Conference that took place in Baltimore in May 2012, various topics were addressed, including the scientific basis for vaccinology; exploration of the immune response; novel vaccine design; new adjuvants; evaluation of the impact of newly introduced vaccines (such as rotavirus, HPV vaccines); vaccine safety; and immunization strategies. The new techniques of systems biology allow for a more comprehensive approach to the study of immune responses in order to identify correlates of protection and to design novel vaccines against chronic diseases such as AIDS or malaria, against which natural immunity is incomplete
    corecore