289 research outputs found

    Numerical Study of Optical Frequency Combs in mid-IR Quantum Cascade Lasers: Effective Semiconductor Maxwell-Bloch Equations

    Get PDF
    In this paper a theoretical model based on Effective Semiconductor Maxwell-Bloch Equations (ESMBEs) is proposed for the description of the dynamics of a multi-mode mid-Infrared (mid-IR) Quantum Cascade Laser (QCL) in Fabry Perot (FP) configuration, in order to investigate the spontaneous generation of frequency combs in this device. In agreement with recent experimental results our numerical simulations show both chaotic and regular multimode regimes. In the latter case we identify self-confined structures travelling along the cavity, and furthermore the instantaneous frequency is characterized by a linear chirp behaviour

    Observation of electro-activated localized structures in broad area VCSELs

    Get PDF
    We demonstrate experimentally the electro-activation of a localized optical structure in a coherently driven broad-area vertical-cavity surface-emitting laser (VCSEL) operated below threshold. Control is achieved by electro-optically steering a writing beam through a pre-programmable switch based on a photorefractive funnel waveguide.Comment: 5 Figure

    Dynamic regimes and damping of relaxation oscillations in III-V/Si external cavity lasers

    Get PDF
    We report how external cavity IIIV/Si hybrid lasers operate in regimes of ultradamped relaxation oscillations or in turbulent and selfpulsing regimes. The different regimes are reached by detuning the lasing wavelength respect to the mirror effective reflectivity peak and are the consequence of the dispersive narrow band reflectivity of the silicon photonics mirror, the linewidth enhancement factor and fourwave mixing in the gain medium

    Dynamics and tolerance to external optical feedback of III-V/Si hybrid lasers with dispersive narrowband mirror

    Get PDF
    We report how external cavity III-V/Si hybrid lasers operate in regimes of ultra-damped relaxation oscillations or in unstable regimes as consequence to the dispersive mirror, non-zero linewidth enhancement factor and four-wave mixing in the gain medium. Tolerance to external optical feedback is also discussed

    Versatile multimodality imaging system based on detectorless and scanless optical feedback interferometry—a retrospective overview for a prospective vision

    Get PDF
    In this retrospective compendium, we attempt to draw a “fil rouge” along fifteen years of our research in the field of optical feedback interferometry aimed at guiding the readers to the verge of new developments in the field. The general reader will be moved at appreciating the versatility and the still largely uncovered potential of the optical feedback interferometry, for both sensing and imaging applications. By discovering the broad range of available wavelengths (0.4–120 μm), the different types of suitable semiconductor lasers (Fabry–Perot, distributed feedback, vertical-cavity, quantum-cascade), and a number of unconventional tenders in multi-axis displacement, ablation front progression, self-referenced measurements, multispectral, structured light feedback imaging and compressive sensing, the specialist also could find inspirational suggestions to expand his field of research

    Terahertz near-field nanoscopy based on detectorless laser feedback interferometry under different feedback regimes

    Get PDF
    Near-field imaging techniques, at terahertz frequencies (1-10 THz), conventionally rely on bulky laser sources and detectors. Here, we employ a semiconductor heterostructure laser as a THz source and, simultaneously, as a phase-sensitive detector, exploiting optical feedback interferometry combined with scattering near-field nanoscopy. We analyze the amplitude and phase sensitivity of the proposed technique as a function of the laser driving current and of the feedback attenuation, discussing the operational conditions ideal to optimize the nano-imaging contrast and the phase sensitivity. As a targeted nanomaterial, we exploit a thin (39 nm) flake of Bi2Te2.2Se0.8, a topological insulator having infrared active optical phonon modes. The self-mixing interference fringes are analyzed within the Lang-Kobayashi formalism to rationalize the observed variations as a function of Acket’s parameter C in the full range of weak feedback (C < 1)

    Soliton dynamics of ring quantum cascade lasers with injected signal

    Get PDF
    Nonlinear interactions in many physical systems lead to symmetry breaking phenomena in which an initial spatially homogeneous stationary solution becomes modulated. Modulation instabilities have been widely studied since the 1960s in different branches of nonlinear physics. In optics, they may result in the formation of optical solitons, localized structures that maintain their shape as they propagate, which have been investigated in systems ranging from optical fibres to passive microresonators. Recently, a generalized version of the Lugiato-Lefever equation predicted their existence in ring quantum cascade lasers with an external driving field, a configuration that enables the bistability mechanism at the basis of the formation of optical solitons. Here, we consider this driven emitter and extensively study the structures emerging therein. The most promising regimes for localized structure formation are assessed by means of a linear stability analysis of the homogeneous stationary solution (or continuous-wave solution). In particular, we show the existence of phase solitons - chiral structures excited by phase jumps in the cavity - and cavity solitons. The latter can be deterministically excited by means of writing pulses and manipulated by the application of intensity gradients, making them promising as frequency combs (in the spectral domain) or reconfigurable bit sequences that can encode information inside the ring cavity

    Unifying Frequency Combs in Active and Passive Cavities: Temporal Solitons in Externally Driven Ring Lasers

    Get PDF
    Frequency combs have become a prominent research area in optics. Of particular interest as integrated comb technology are chip-scale sources, such as semiconductor lasers and microresonators, which consist of resonators embedding a nonlinear medium either with or without population inversion. Such active and passive cavities were so far treated distinctly. Here we propose a formal unification by introducing a general equation that describes both types of cavities. The equation also captures the physics of a hybrid device - a semiconductor ring laser with an external optical drive - in which we show the existence of temporal solitons, previously identified only in microresonators, thanks to symmetry breaking and self-localization phenomena typical of spatially extended dissipative systems
    • …
    corecore