12 research outputs found

    Prospective analysis of circulating metabolites and endometrial cancer risk

    Get PDF
    Background: Endometrial cancer is strongly associated with obesity and dysregulation of metabolic factors such as estrogen and insulin signaling are causal risk factors for this malignancy. To identify additional novel metabolic pathways associated with endometrial cancer we performed metabolomic analyses on pre-diagnostic plasma samples from 853 case-control pairs from the European Prospective Investigation into Cancer and Nutrition (EPIC). Methods: A total of 129 metabolites (acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexoses, and sphingolipids) were measured by liquid chromatography-mass spectrometry. Conditional logistic regression estimated the associations of metabolites with endometrial cancer risk. An analysis focusing on clusters of metabolites using the bootstrap lasso method was also employed. Results: After adjustment for body mass index, sphingomyelin [SM] C18:0 was positively (OR1SD: 1.18, 95% CI: 1.05-1.33), and glycine, serine, and free carnitine (C0) were inversely (OR1SD: 0.89, 95% CI: 0.80-0.99; OR1SD: 0.89, 95% CI: 0.79-1.00 and OR1SD: 0.91, 95% CI: 0.81-1.00, respectively) associated with endometrial cancer risk. Serine, C0 and two sphingomyelins were selected by the lasso method in >90% of the bootstrap samples. The ratio of esterified to free carnitine (OR1SD: 1.14, 95% CI: 1.02-1.28) and that of short chain to free acylcarnitines (OR1SD: 1.12, 95% CI: 1.00-1.25) were positively associated with endometrial cancer risk. Further adjustment for C-peptide or other endometrial cancer risk factors only minimally altered the results. Conclusion: These findings suggest that variation in levels of glycine, serine, SM C18:0 and free carnitine may represent specific pathways linked to endometrial cancer development. If causal, these pathways may offer novel targets for endometrial cancer prevention

    Blood pressure and risk of cancer in the European Prospective Investigation into Cancer and Nutrition.

    Get PDF
    Several studies have reported associations of hypertension with cancer, but not all results were conclusive. We examined the association of systolic (SBP) and diastolic (DBP) blood pressure with the development of incident cancer at all anatomical sites in the European Prospective Investigation into Cancer and Nutrition (EPIC). Hazard ratios (HRs) (95% confidence intervals) were estimated using multivariable Cox proportional hazards models, stratified by EPIC-participating center and age at recruitment, and adjusted for sex, education, smoking, body mass index, physical activity, diabetes and dietary (in women also reproductive) factors. The study included 307,318 men and women, with an average follow-up of 13.7 (standard deviation 4.4) years and 39,298 incident cancers. We confirmed the expected positive association with renal cell carcinoma: HR = 1.12 (1.08-1.17) per 10 mm Hg higher SBP and HR = 1.23 (1.14-1.32) for DBP. We additionally found positive associations for esophageal squamous cell carcinoma (SCC): HR = 1.16 (1.07-1.26) (SBP), HR = 1.31 (1.13-1.51) (DBP), weaker for head and neck cancers: HR = 1.08 (1.04-1.12) (SBP), HR = 1.09 (1.01-1.17) (DBP) and, similarly, for skin SCC, colon cancer, postmenopausal breast cancer and uterine adenocarcinoma (AC), but not for esophageal AC, lung SCC, lung AC or uterine endometroid cancer. We observed weak inverse associations of SBP with cervical SCC: HR = 0.91 (0.82-1.00) and lymphomas: HR = 0.97 (0.93-1.00). There were no consistent associations with cancers in other locations. Our results are largely compatible with published studies and support weak associations of blood pressure with cancers in specific locations and morphologies

    Polyphenol intake and differentiated thyroid cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort

    No full text
    Polyphenols are bioactive compounds with several anticarcinogenic activities; however, human data regarding associations with thyroid cancer (TC) is still negligible. Our aim was to evaluate the association between intakes of total, classes and subclasses of polyphenols and risk of differentiated TC and its main subtypes, papillary and follicular, in a European population. The European Prospective Investigation into Cancer and Nutrition cohort included 476,108 men and women from 10 European countries. During a mean follow-up of 14 years, there were 748 incident differentiated TC cases, including 601 papillary and 109 follicular tumors. Polyphenol intake was estimated at baseline using validated center/country-specific dietary questionnaires and the Phenol-Explorer database. In multivariable-adjusted Cox regression models, no association between total polyphenol and the risks of overall differentiated TC (HRQ4 vs. Q1 = 0.99, 95% confidence interval [CI] 0.77–1.29), papillary (HRQ4 vs. Q1 = 1.06, 95% CI 0.80–1.41) or follicular TC (HRQ4 vs. Q1 = 1.10, 95% CI 0.55–2.22) were found. No associations were observed either for flavonoids, phenolic acids or the rest of classes and subclasses of polyphenols. After stratification by body mass index (BMI), an inverse association between the intake of polyphenols (p-trend = 0.019) and phenolic acids (p-trend = 0.007) and differentiated TC risk in subjects with BMI ≥ 25 was observed. In conclusion, our study showed no associations between dietary polyphenol intake and differentiated TC risk; although further studies are warranted to investigate the potential protective associations in overweight and obese individuals. © 2019 UIC

    Polyphenol intake and differentiated thyroid cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Cohort

    No full text
    Polyphenols are bioactive compounds with several anticarcinogenic activities; however, human data regarding associations with thyroid cancer (TC) is still negligible. Our aim was to evaluate the association between intakes of total, classes and subclasses of polyphenols and risk of differentiated TC and its main subtypes, papillary and follicular, in a European population. The European Prospective Investigation into Cancer and Nutrition cohort included 476,108 men and women from 10 European countries. During a mean follow‐up of 14 years, there were 748 incident differentiated TC cases, including 601 papillary and 109 follicular tumors. Polyphenol intake was estimated at baseline using validated center/country‐specific dietary questionnaires and the Phenol‐Explorer database. In multivariable‐adjusted Cox regression models, no association between total polyphenol and the risks of overall differentiated TC (HRQ4 vs. Q1 = 0.99, 95% confidence interval [CI] 0.77–1.29), papillary (HRQ4 vs. Q1 = 1.06, 95% CI 0.80–1.41) or follicular TC (HRQ4 vs. Q1 = 1.10, 95% CI 0.55–2.22) were found. No associations were observed either for flavonoids, phenolic acids or the rest of classes and subclasses of polyphenols. After stratification by body mass index (BMI), an inverse association between the intake of polyphenols (p‐trend = 0.019) and phenolic acids (p‐trend = 0.007) and differentiated TC risk in subjects with BMI ≥ 25 was observed. In conclusion, our study showed no associations between dietary polyphenol intake and differentiated TC risk; although further studies are warranted to investigate the potential protective associations in overweight and obese individuals

    Polyphenol intake and differentiated thyroid cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort

    No full text
    International audiencePolyphenols are bioactive compounds with several anticarcinogenic activities; however, human data regarding associations with thyroid cancer (TC) is still negligible. Our aim was to evaluate the association between intakes of total, classes and subclasses of polyphenols and risk of differentiated TC and its main subtypes, papillary and follicular, in a European population. The European Prospective Investigation into Cancer and Nutrition cohort included 476,108 men and women from 10 European countries. During a mean follow-up of 14 years, there were 748 incident differentiated TC cases, including 601 papillary and 109 follicular tumors. Polyphenol intake was estimated at baseline using validated center/country-specific dietary questionnaires and the Phenol-Explorer database. In multivariable-adjusted Cox regression models, no association between total polyphenol and the risks of overall differentiated TC (HRQ4 vs. Q1 = 0.99, 95% confidence interval [CI] 0.77–1.29), papillary (HRQ4 vs. Q1 = 1.06, 95% CI 0.80–1.41) or follicular TC (HRQ4 vs. Q1 = 1.10, 95% CI 0.55–2.22) were found. No associations were observed either for flavonoids, phenolic acids or the rest of classes and subclasses of polyphenols. After stratification by body mass index (BMI), an inverse association between the intake of polyphenols (p-trend = 0.019) and phenolic acids (p-trend = 0.007) and differentiated TC risk in subjects with BMI ≥ 25 was observed. In conclusion, our study showed no associations between dietary polyphenol intake and differentiated TC risk; although further studies are warranted to investigate the potential protective associations in overweight and obese individuals

    Polyphenol intake and differentiated thyroid cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort

    No full text
    Polyphenols are bioactive compounds with several anticarcinogenic activities; however, human data regarding associations with thyroid cancer (TC) is still negligible. Our aim was to evaluate the association between intakes of total, classes and subclasses of polyphenols and risk of differentiated TC and its main subtypes, papillary and follicular, in a European population. The European Prospective Investigation into Cancer and Nutrition cohort included 476,108 men and women from 10 European countries. During a mean follow-up of 14 years, there were 748 incident differentiated TC cases, including 601 papillary and 109 follicular tumors. Polyphenol intake was estimated at baseline using validated center/country-specific dietary questionnaires and the Phenol-Explorer database. In multivariable-adjusted Cox regression models, no association between total polyphenol and the risks of overall differentiated TC (HRQ4 vs. Q1 = 0.99, 95% confidence interval [CI] 0.77–1.29), papillary (HRQ4 vs. Q1 = 1.06, 95% CI 0.80–1.41) or follicular TC (HRQ4 vs. Q1 = 1.10, 95% CI 0.55–2.22) were found. No associations were observed either for flavonoids, phenolic acids or the rest of classes and subclasses of polyphenols. After stratification by body mass index (BMI), an inverse association between the intake of polyphenols (p-trend = 0.019) and phenolic acids (p-trend = 0.007) and differentiated TC risk in subjects with BMI ≥ 25 was observed. In conclusion, our study showed no associations between dietary polyphenol intake and differentiated TC risk; although further studies are warranted to investigate the potential protective associations in overweight and obese individuals

    Blood pressure and risk of cancer in the European Prospective Investigation into Cancer and Nutrition

    No full text
    Several studies have reported associations of hypertension with cancer, but not all results were conclusive. We examined the association of systolic (SBP) and diastolic (DBP) blood pressure with the development of incident cancer at all anatomical sites in the European Prospective Investigation into Cancer and Nutrition (EPIC). Hazard ratios (HRs) (95% confidence intervals) were estimated using multivariable Cox proportional hazards models, stratified by EPIC-participating center and age at recruitment, and adjusted for sex, education, smoking, body mass index, physical activity, diabetes and dietary (in women also reproductive) factors. The study included 307,318 men and women, with an average follow-up of 13.7 (standard deviation 4.4) years and 39,298 incident cancers. We confirmed the expected positive association with renal cell carcinoma: HR = 1.12 (1.08–1.17) per 10 mm Hg higher SBP and HR = 1.23 (1.14–1.32) for DBP. We additionally found positive associations for esophageal squamous cell carcinoma (SCC): HR = 1.16 (1.07–1.26) (SBP), HR = 1.31 (1.13–1.51) (DBP), weaker for head and neck cancers: HR = 1.08 (1.04–1.12) (SBP), HR = 1.09 (1.01–1.17) (DBP) and, similarly, for skin SCC, colon cancer, postmenopausal breast cancer and uterine adenocarcinoma (AC), but not for esophageal AC, lung SCC, lung AC or uterine endometroid cancer. We observed weak inverse associations of SBP with cervical SCC: HR = 0.91 (0.82–1.00) and lymphomas: HR = 0.97 (0.93–1.00). There were no consistent associations with cancers in other locations. Our results are largely compatible with published studies and support weak associations of blood pressure with cancers in specific locations and morphologies

    Separate and combined associations of obesity and metabolic health with coronary heart disease: A pan-European case-cohort analysis

    No full text
    Aims: The hypothesis of 'metabolically healthy obesity' implies that, in the absence of metabolic dysfunction, individuals with excess adiposity are not at greater cardiovascular risk We tested this hypothesis in a large pan-European prospective study. Methods and results: We conducted a case-cohort analysis in the 520 000-person European Prospective Investigation into Cancer and Nutrition study ('EPIC-CVD'). During a median follow-up of 12.2 years, we recorded 7637 incident coronary heart disease (CHD) cases. Using cut-offs recommended by guidelines, we defined obesity and overweight using body mass index (BMI), and metabolic dysfunction ('unhealthy') as ≥3 of elevated blood pressure, hypertriglyceridaemia, low HDL-cholesterol, hyperglycaemia, and elevated waist circumference. We calculated hazard ratios (HRs) and 95% confidence intervals (95% CI) within each country using Prentice-weighted Cox proportional hazard regressions, accounting for age, sex, centre, education, smoking, diet, and physical activity. Compared with metabolically healthy normal weight people (reference), HRs were 2.15 (95% CI: 1.79; 2.57) for unhealthy normal weight, 2.33 (1.97; 2.76) for unhealthy overweight, and 2.54 (2.21; 2.92) for unhealthy obese people. Compared with the reference group, HRs were 1.26 (1.14; 1.40) and 1.28 (1.03; 1.58) for metabolically healthy overweight and obese people, respectively. These results were robust to various sensitivity analyses. Conclusion: Irrespective of BMI, metabolically unhealthy individuals had higher CHD risk than their healthy counterparts. Conversely, irrespective of metabolic health, overweight and obese people had higher CHD risk than lean people. These findings challenge the concept of 'metabolically healthy obesity', encouraging population-wide strategies to tackle obesity. © The Author 2017

    Blood pressure and risk of cancer in the European Prospective Investigation into Cancer and Nutrition

    No full text
    Several studies have reported associations of hypertension with cancer, but not all results were conclusive. We examined the association of systolic (SBP) and diastolic (DBP) blood pressure with the development of incident cancer at all anatomical sites in the European Prospective Investigation into Cancer and Nutrition (EPIC). Hazard ratios (HRs) (95% confidence intervals) were estimated using multivariable Cox proportional hazards models, stratified by EPIC-participating center and age at recruitment, and adjusted for sex, education, smoking, body mass index, physical activity, diabetes and dietary (in women also reproductive) factors. The study included 307,318 men and women, with an average follow-up of 13.7 (standard deviation 4.4) years and 39,298 incident cancers. We confirmed the expected positive association with renal cell carcinoma: HR = 1.12 (1.08–1.17) per 10 mm Hg higher SBP and HR = 1.23 (1.14–1.32) for DBP. We additionally found positive associations for esophageal squamous cell carcinoma (SCC): HR = 1.16 (1.07–1.26) (SBP), HR = 1.31 (1.13–1.51) (DBP), weaker for head and neck cancers: HR = 1.08 (1.04–1.12) (SBP), HR = 1.09 (1.01–1.17) (DBP) and, similarly, for skin SCC, colon cancer, postmenopausal breast cancer and uterine adenocarcinoma (AC), but not for esophageal AC, lung SCC, lung AC or uterine endometroid cancer. We observed weak inverse associations of SBP with cervical SCC: HR = 0.91 (0.82–1.00) and lymphomas: HR = 0.97 (0.93–1.00). There were no consistent associations with cancers in other locations. Our results are largely compatible with published studies and support weak associations of blood pressure with cancers in specific locations and morphologies. © 2019 UIC
    corecore