1,522 research outputs found

    Tetrazolium salts and formazan products in cell biology: viability assessment, fluorescence imaging, and labeling perspectives

    Get PDF
    For many years various tetrazolium salts and their formazan products have been employed in histochemistry and for assessing cell viability. For the latter application, the most widely used are 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and 5-cyano-2,3-di-(p-tolyl)-tetrazolium chloride (CTC) for viability assays of eukaryotic cells and bacteria, respectively. In these cases, the nicotinamide-adenine-dinucleotide (NAD(P)H) coenzyme and dehydrogenases from metabolically active cells reduce tetrazolium salts to strongly colored and lipophilic formazan products, which are then quantified by absorbance (MTT) or fluorescence (CTC). More recently, certain sulfonated tetrazolium, which give rise to water-soluble formazans, have also proved useful for cytotoxicity assays. We describe several aspects of the application of tetrazolium salts and formazans in biomedical cell biology research, mainly regarding formazan-based colorimetric assays, cellular reduction of MTT, and localization and fluorescence of the MTT formazan in lipidic cell structures. In addition, some pharmacological and labeling perspectives of these compounds are also described

    NIR laser pointer for in vivo photothermal therapy of murine LM3 tumor using intratumoral China ink as a photothermal agent

    Full text link
    The photothermal effect is one of the most promising photonic procedures currently under development to successfully treat several clinical disorders, none the least some kinds of cancer. At present, this field is undergoing a renewed interest due to advances in both photothermal materials and better-suited light sources. However, scientific studies in this area are sometimes hampered by the relative unavailability of state-of-art materials or the complexity of setting up a dedicated optical facility. Here, we present a simple and affordable approach to do research in the photothermal field that relies on a commercial NIR laser pointer and a readily available everyday pigment: China ink. A proof-of-concept study is presented in which mice bearing intradermal LM3 mammary adenocarcinoma tumors were successfully treated in vivo employing China ink and the laser pointer. TUNEL and Ki-67 post-treatment tissue assessment clearly indicates the deleterious action of the photothermal treatment on the tumor. Therefore, the feasibility of this simple approach has been demonstrated, which may inspire other groups to implement simple procedures to further explore the photothermal effec

    Chandra observations of Cygnus OB2

    Get PDF
    Cygnus OB2 is the nearest example of a massive star forming region, containing over 50 O-type stars and hundreds of B-type stars. We have analyzed two Chandra pointings in Cyg OB2, detecting ~1700 X-ray sources, of which ~1450 are thought to be members of the association. Optical and near-IR photometry has been obtained for ~90% of these sources from recent deep Galactic plane surveys. We have performed isochrone fits to the near-IR color-magnitude diagram, deriving ages of 3.5(+0.75,-1.0) and 5.25(+1.5,-1.0) Myrs for sources in the two fields, both with considerable spreads around the pre-MS isochrones. The presence of a second population in the region, somewhat older than the present-day O-type stars, has been suggested by other authors and fits with the ages derived here. The fraction of sources with inner circumstellar disks (as traced by the K-band excess) is found to be very low, but appropriate for a population of age ~5 Myrs. We measure the stellar mass functions and find a power-law slope of Gamma = -1.09 +/- 0.13, in good agreement with the global mean value estimated by Kroupa. A steepening of the mass function at high masses is observed and we suggest this is due to the presence of the previous generation of stars that have lost their most massive members. Finally, combining our mass function and an estimate of the radial density profile of the association suggests a total mass of Cyg OB2 of ~30,000 Msun, similar to that of many of our Galaxy's most massive star forming regions.Comment: 6 pages, 4 figures, conference proceedings for JENAM 2010: Star Clusters in the Era of Large Surveys, Editors: A.Moitinho and J. Alve

    The Threat of Capital Drain: A Rationale for Public Banks?

    Get PDF
    This paper yields a rationale for why subsidized public banks may be desirable from a regional perspective in a financially integrated economy. We present a model with credit rationing and heterogeneous regions in which public banks prevent a capital drain from poorer to richer regions by subsidizing local depositors, for example, through a public guarantee. Under some conditions, cooperative banks can perform the same function without any subsidization; however, they may be crowded out by public banks. We also discuss the impact of the political structure on the emergence of public banks in a political-economy setting and the role of interregional mobility

    Muscle RING Finger-1 Promotes a Maladaptive Phenotype in Chronic Hypoxia-Induced Right Ventricular Remodeling

    Get PDF
    Exposure to chronic hypoxia (CH) induces elevated pulmonary artery pressure/resistance, leading to an eventual maladaptive right ventricular hypertrophy (RVH). Muscle RING finger-1 (MuRF1) is a muscle-specific ubiquitin ligase that mediates myocyte atrophy and has been shown to play a role in left ventricular hypertrophy and altered cardiac bioenergetics in pressure overloaded hearts. However, little is known about the contribution of MuRF1 impacting RVH in the setting of CH. Therefore, we hypothesized that MuRF1 deletion would enhance RVH compared to their wild-type littermates, while cardiac-specific overexpression would reduce hypertrophy following CH-induced pulmonary hypertension. We assessed right ventricular systolic pressure (RVSP), right ventricle to left ventricle plus septal weight ratio (RV/LV+S) and hematocrit (Hct) following a 3-wk isobaric CH exposure. Additionally, we conducted dual-isotope SPECT/CT imaging with cardiac function agent 201Tl-chloride and cell death agent 99mTc-annexin V. Predictably, CH induced pulmonary hypertension, measured by increased RVSP, RV/LV+S and Hct in WT mice compared to normoxic WT mice. Normoxic WT and MuRF1-null mice exhibited no significant differences in RVSP, RV/LV+S or Hct. CH-induced increases in RVSP were also similar between WT and MuRF1-null mice; however, RV/LV+S and Hct were significantly elevated in CH-exposed MuRF1-null mice compared to WT. In cardiac-specific MuRF1 overexpressing mice, RV/LV+S increased significantly due to CH exposure, even greater than in WT mice. This remodeling appeared eccentric, maladaptive and led to reduced systemic perfusion. In conclusion, these results are consistent with an atrophic role for MuRF1 regulating the magnitude of right ventricular hypertrophy following CH-induction of pulmonary hypertension

    Inoculated mammary carcinoma-associated fibroblasts: contribution to hormone independent tumor growth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing evidence has underscored the role of carcinoma associated fibroblasts (CAF) in tumor growth. However, there are controversial data regarding the persistence of inoculated CAF within the tumors. We have developed a model in which murine metastatic ductal mammary carcinomas expressing estrogen and progesterone receptors transit through different stages of hormone dependency. Hormone dependent (HD) tumors grow only in the presence of progestins, whereas hormone independent (HI) variants grow without hormone supply. We demonstrated previously that CAF from HI tumors (CAF-HI) express high levels of FGF-2 and that FGF-2 induced HD tumor growth <it>in vivo</it>. Our main goal was to investigate whether inoculated CAF-HI combined with purified epithelial (EPI) HD cells can induce HD tumor growth.</p> <p>Methods</p> <p>Purified EPI cells of HD and HI tumors were inoculated alone, or together with CAF-HI, into female BALB/c mice and tumor growth was evaluated. In another set of experiments, purified EPI-HI alone or combined with CAF-HI or CAF-HI-GFP were inoculated into BALB/c or BALB/c-GFP mice. We assessed whether inoculated CAF-HI persisted within the tumors by analyzing inoculated or host CAF in frozen sections of tumors growing in BALB/c or BALB/c-GFP mice. The same model was used to evaluate early stages of tumor development and animals were euthanized at 2, 7, 12 and 17 days after EPI-HI or EPI-HI+CAF-HI inoculation. In angiogenesis studies, tumor vessels were quantified 5 days after intradermal inoculation.</p> <p>Results</p> <p>We found that admixed CAF-HI failed to induce epithelial HD tumor growth, but instead, enhanced HI tumor growth (p < 0.001). Moreover, inoculated CAF-HI did not persist within the tumors. Immunofluorescence studies showed that inoculated CAF-HI disappeared after 13 days. We studied the mechanisms by which CAF-HI increased HI tumor growth, and found a significant increase in angiogenesis (p < 0.05) in the co-injected mice at early time points.</p> <p>Conclusions</p> <p>Inoculated CAF-HI do not persist within the tumor mass although they play a role during the first stages of tumor formation promoting angiogenesis. This angiogenic environment is unable to replace the hormone requirement of HD tumors that still need the hormone to recruit the stroma from the host.</p

    Relaxin: Review of Biology and Potential Role in Treating Heart Failure

    Get PDF
    Relaxin is a naturally occurring human peptide initially identified as a reproductive hormone. More recently, relaxin has been shown to play a key role in the maternal hemodynamic and renal adjustments that accommodate pregnancy. An understanding of these physiologic effects has led to the evaluation of relaxin as a pharmacologic agent for the treatment of patients with acute heart failure. Preliminary results have been encouraging. In addition, the other known biologic properties of relaxin, including anti-inflammatory effects, extracellular matrix remodeling effects, and angiogenic and anti-ischemic effects, all may play a role in potential benefits of relaxin therapy. Ongoing, large-scale clinical testing will provide additional insights into the potential role of relaxin in the treatment of heart failure

    Strategies to Target Tumor Immunosuppression

    Get PDF
    The tumor microenvironment is currently in the spotlight of cancer immunology research as a key factor impacting tumor development and progression. While antigen-specific immune responses play a crucial role in tumor rejection, the tumor hampers these immune responses by creating an immunosuppressive microenvironment. Recently, major progress has been achieved in the field of cancer immunotherapy, and several groundbreaking clinical trials demonstrated the potency of such therapeutic interventions in patients. Yet, the responses greatly vary among individuals. This calls for the rational design of more efficacious cancer immunotherapeutic interventions that take into consideration the “immune signature” of the tumor. Multimodality treatment regimens that aim to enhance intratumoral homing and activation of antigen-specific immune effector cells, while simultaneously targeting tumor immunosuppression, are pivotal for potent antitumor immunity

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore