393 research outputs found

    Joint field experiments for comparisons of measuring methods of photosynthetic production

    Get PDF
    During the 1st GAP Workshop at Konstanz in April 1982 comparative measurements of phytoplankton primary production by several techniques were conducted simultaneously at an offshore station in Lake Konstanz and an experimental algal pond. Suspended glass bottle exposure techniques using 14C and 13C uptake gave Pz (mg C m−3 h−1) values which varied considerably near-surface, but estimates of areal rates for the euphotic zone ΣPcu(mg C m−3 h−1) which were reasonably close. In the lake, ΣPz, from a vertical tube exposure (with 14C uptake) was greater than rates derived for integrated bottle samples. The oxygen bottle method permitted a good estimate of compensation depth, corresponding to in situ growth studies. There were difficulties in direct comparison between O2 and carbon methods. Correlation between them for Pz was good in the lake but poor in the pond, both for suspended bottle and vertical tube methods. This series demonstrates that despite reasonable overall estimates, comparatively minor methodological differences in experimental technique can cause large variatio

    Biogeochemical aspects of bottom anoxia in a Mediterranean lagoon (Thau, France)

    Full text link
    Physical and chemical characteristics (temperature, salinity, dissolved oxygen), nutrients [dissolved inorganic nitrogen (DIN), soluble reactive phosphorus (SRP) and silicate], dissolved organic nitrogen (DON) and phosphorus and particulate matter [particulate organic carbon (POC) and nitrogen (PON) and chlorophyll a] were measured at a station located in the deepest part of the Thau lagoon (8.5 m), France, during a 10 d period of bottom anoxia in summer 1994. The upper 8 cm of sediment were also analyzed for ammonium (NH(4)(+)) and SRP concentrations in the porewater. The study period was characterized by mean wind speed under 4 m s(-1) which induced an increase of surface temperature from 18 to 29 degrees C with the formation of a thermocline. The correlation (p < 10(-4)) between the wind speed averaged over the previous day and the difference between bottom and surface temperatures showed that the wind constituted the main vector of vertical mixing. The lack of wind led to dissolved oxygen depletion in the bottom 2 m and to a strong porosity increase in the upper 10 cm of sediment (80 to >95%). Anoxic conditions increased NH(4)(+) and SRP concentrations in porewater from 231 +/- 89 to 1305 +/- 305 (+/- SD) mu M and from 6.6 +/- 0.8 to 108 +/- 43 mu M respectively. The potential increase of NH(4)(+) concentrations in porewater estimated from the mineralization of the microphytobenthos explained 30% of the measured increase in the upper 8 cm of porewater. The study period was characterized by an increase in NH(4)(+) SRP and dissolved Si concentrations in the bottom water column (maxima respectively 24.2, 4.9 and 57 mu M). Linear regressions between nutrient concentrations in the water column and temperature revealed a strong enhancement of bottom fluxes during anoxia. Nitrate + nitrite (NO(3)(-) + NO(2)(-)) were absent in anoxic waters and remained below 0.5 mu M in oxic waters. Monthly concentrations of SRP in the water column of the Thau lagoon from 1970 to 1994 revealed anoxia events by summer peak values corresponding to strong bottom anoxia. Nevertheless, the general trend was a decrease due to the gradual control of eutrophication which should lead to the disappearance of bottom anoxia within the next decade. A fraction of the nutrients of benthic origin was transformed into planktonic particulate matter via primary production which increased the concentrations of chi a from about 1 to 15 mu g l(-1). Concentrations of DON and PON in the water column were significantly correlated, suggesting that DON compounds were released by the pelagic food web but not directly by the sediment. The increase of total nitrogen (DIN + DON + PON), considering the water column as a closed box during 10 d of winds under 5 m s(-1), was estimated at 1.7 mu mol N l(-1) d(-1) and would correspond to a benthic flux of 600 mu mol N m(-1) h(-1) for 10 d

    Inorganic carbon and pH dependency of Trichodesmium's photosynthetic rates.

    Get PDF
    We established the relationship between photosynthetic carbon fixation rates and pH, CO2 and HCO3- concentrations in the diazotroph Trichodesmium erythraeum IMS101. Inorganic 14C-assimilation was measured in TRIS-buffered ASW medium where the absolute and relative concentrations of CO2, pH and HCO3- were manipulated. First, we varied the total dissolved inorganic carbon concentration (TIC) (< 0 to ~ 5 mM) at constant pH, so ratios of CO2 and HCO3- remained relatively constant. Second, we varied pH (~ 8.54 to 7.52) at constant TIC, so CO2 increased whilst HCO3- declined. We found that 14C-assimilation could be described by the same function of CO2 for both approaches but showed different dependencies on HCO3- when pH was varied at constant TIC than when TIC was varied at constant pH. A numerical model of Trichodesmium's CCM showed carboxylation rates are modulated by HCO3- and pH. The decrease in Ci assimilation at low CO2, when TIC was varied, is due to HCO3- uptake limitation of the carboxylation rate. Conversely, when pH was varied, Ci assimilation declined due to a high-pH mediated increase in HCO3- and CO2 leakage rates, potentially coupled to other processes (uncharacterised within the CCM model) that restrict Ci assimilation rates under high-pH conditions

    Acclimation of<i>E</i><i>miliania huxleyi</i>(1516) to nutrient limitation involves precise modification of the proteome to scavenge alternative sources of N and P

    Get PDF
    Limitation of marine primary production by the availability of nitrogen or phosphorus is common. Emiliania huxleyi, a ubiquitous phytoplankter that plays key roles in primary production, calcium carbonate precipitation and production of dimethyl sulfide, often blooms in mid-latitude at the beginning of summer when inorganic nutrient concentrations are low. To understand physiological mechanisms that allow such blooms, we examined how the proteome of E. huxleyi (strain 1516) responds to N and P limitation. We observed modest changes in much of the proteome despite large physiological changes (e.g. cellular biomass, C, N and P) associated with nutrient limitation of growth rate. Acclimation to nutrient limitation did however involve significant increases in the abundance of transporters for ammonium and nitrate under N limitation and for phosphate under P limitation. More notable were large increases in proteins involved in the acquisition of organic forms of N and P, including urea and amino acid/polyamine transporters and numerous C-N hydrolases under N limitation and a large upregulation of alkaline phosphatase under P limitation. This highly targeted reorganization of the proteome towards scavenging organic forms of macronutrients gives unique insight into the molecular mechanisms that underpin how E. huxleyi has found its niche to bloom in surface waters depleted of inorganic nutrients

    The influence of light on nitrogen cycling and the primary nitrite maximum in a seasonally stratified sea

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Progress In Oceanography 91 (2011): 545–560, doi:10.1016/j.pocean.2011.09.001.In the seasonally stratified Gulf of Aqaba Red Sea, both NO2- release by phytoplankton and NH4+ oxidation by nitrifying microbes contributed to the formation of a primary nitrite maximum (PNM) over different seasons and depths in the water column. In the winter and during the days immediately following spring stratification, NO2- formation was strongly correlated (R2=0.99) with decreasing irradiance and chlorophyll, suggesting that incomplete NO3- reduction by light limited phytoplankton was a major source of NO2-. However, as stratification progressed, NO2- continued to be generated below the euphotic depth by microbial NH4+ oxidation, likely due to differential photoinhibition of NH4+ and NO2- oxidizing populations. Natural abundance stable nitrogen isotope analyses revealed a decoupling of the δ15N and δ18O in the combined NO3- and NO2- pool, suggesting that assimilation and nitrification were co-occurring in surface waters. As stratification progressed, the δ15N of particulate N below the euphotic depth increased from -5‰ to up to +20‰. N uptake rates were also influenced by light; based on 15N tracer experiments, assimilation of NO3-, NO2-, and urea was more rapid in the light (434±24, 94±17, and 1194±48 nmol N L-1 day-1 respectively) than in the dark (58±14, 29±14, and 476±31 nmol N L-1 day-1 respectively). Dark NH4+ assimilation was 314±31 nmol N L-1 day-1, while light NH4+ assimilation was much faster, resulting in complete consumption of the 15N spike in less than 7 hour from spike addition. The overall rate of coupled urea mineralization and NH¬4+ oxidation (14.1±7.6 nmol N L-1 day-1) was similar to that of NH¬4+ oxidation alone (16.4±8.1 nmol N L-1 day-1), suggesting that for labile dissolved organic N compounds like urea, mineralization was not a rate limiting step for nitrification. Our results suggest that assimilation and nitrification compete for NH4+ and that N transformation rates throughout the water column are influenced by light over diel and seasonal cycles, allowing phytoplankton and nitrifying microbes to contribute jointly to PNM formation. We identify important factors that influence the N cycle throughout the year, including light intensity, substrate availability, and microbial community structure. These processes could be relevant to other regions worldwide where seasonal variability in mixing depth and stratification influence the contributions of phytoplankton and non-photosynthetic microbes to the N cycle.This research was supported under the North Atlantic Treaty Organization (NATO) Science for Peace Grant SfP 982161 to AP and AFP, a grant from the Koret Foundation to AP, a National Science Foundation Biological Oceanography grant to AP, the Israel Science Foundation grant 135/05 to AFP, and research grant 8330-06 from the Geological Society of America to KRMM

    Testing the Waste Based Biorefinery Concept: Pilot Scale Cultivation of Microalgal Species on Spent Anaerobic Digestate Fluids

    Get PDF
    PurposeA waste based biorefinery approach has been tested.MethodsThis has been investigated by culturing in a 800 L photobioreactor two autotrophic microalgae namely Nannochloropsis oceanica and Scenedesmus quadricauda utilising filtered spent anaerobic digestate fluids of N:P ratio 14.22 as substrate.ResultsSignificant rates of bioremediation simultaneously with biomass and associated end product formation were achieved. Nitrogen and phosphorus of waste based media was decreased up to 90%. The biomass biochemical analysis of the microalgae when grown on the waste based formulated media demonstrated the comparable content of lipids and proteins with the species grown on f/2 media.ConclusionsTheoretical biomethane potential generation, should the algal cultures be placed in an anaerobic digester, was calculated at 0.58 L CH4 g−1 VS for N. oceanica and 0.48 L CH4 g−1 VS for S. quadricauda showing comparable results with other studies of different source of biomass

    Modeling the seasonal autochthonous sources of dissolved organic carbon and nitrogen in the upper Chesapeake Bay

    Get PDF
    In this paper we investigate the seasonal autochthonous sources of dissolved organic carbon (DOC) and nitrogen (DON) in the euphotic zone at a station in the upper Chesapeake Bay using a new mass-based ecosystem model. Important features of the model are: (1) carbon and nitrogen are incorporated by means of a set of fixed and varying C:N ratios; (2) dissolved organic matter (DOM) is separated into labile, semi-labile, and refractory pools for both C and N; (3) the production and consumption of DOM is treated in detail; and (4) seasonal observations of light, temperature, nutrients, and surface layer circulation are used to physically force the model. The model reasonably reproduces the mean observed seasonal concentrations of nutrients, DOM, plankton biomass, and chlorophyll a. The results suggest that estuarine DOM production is intricately tied to the biomass concentration, ratio, and productivity of phytoplankton, zooplankton, viruses, and bacteria. During peak spring productivity phytoplankton exudation and zooplankton sloppy feeding are the most important autochthonous sources of DOM. In the summer when productivity peaks again, autochthonous sources of DOM are more diverse and, in addition to phytoplankton exudation, important ones include viral lysis and the decay of detritus. The potential importance of viral decay as a source of bioavailable DOM from within the bulk DOM pool is also discussed. The results also highlight the importance of some poorly constrained processes and parameters. Some potential improvements and remedies are suggested. Sensitivity studies on selected parameters are also reported and discussed
    • …
    corecore