80 research outputs found

    Folding by Numbers: Primary Sequence Statistics and Their Use in Studying Protein Folding

    Get PDF
    The exponential growth over the past several decades in the quantity of both primary sequence data available and the number of protein structures determined has provided a wealth of information describing the relationship between protein primary sequence and tertiary structure. This growing repository of data has served as a prime source for statistical analysis, where underlying relationships between patterns of amino acids and protein structure can be uncovered. Here, we survey the main statistical approaches that have been used for identifying patterns within protein sequences, and discuss sequence pattern research as it relates to both secondary and tertiary protein structure. Limitations to statistical analyses are discussed, and a context for their role within the field of protein folding is given. We conclude by describing a novel statistical study of residue patterning in β-strands, which finds that hydrophobic (i,i+2) pairing in β-strands occurs more often than expected at locations near strand termini. Interpretations involving β-sheet nucleation and growth are discussed

    Solvent accessible surface area approximations for rapid and accurate protein structure prediction

    Get PDF
    The burial of hydrophobic amino acids in the protein core is a driving force in protein folding. The extent to which an amino acid interacts with the solvent and the protein core is naturally proportional to the surface area exposed to these environments. However, an accurate calculation of the solvent-accessible surface area (SASA), a geometric measure of this exposure, is numerically demanding as it is not pair-wise decomposable. Furthermore, it depends on a full-atom representation of the molecule. This manuscript introduces a series of four SASA approximations of increasing computational complexity and accuracy as well as knowledge-based environment free energy potentials based on these SASA approximations. Their ability to distinguish correctly from incorrectly folded protein models is assessed to balance speed and accuracy for protein structure prediction. We find the newly developed “Neighbor Vector” algorithm provides the most optimal balance of accurate yet rapid exposure measures

    Atelier XPlore ton cerveau (Grand public)

    No full text
    CERVOXYNational audienc

    High pressure macromolecular crystallography

    No full text
    CERVOXYInternational audienc

    Les états excités de l'oncogène Ras révélés par la cristallographie sous haute pression

    No full text
    National audienc
    • …
    corecore