367 research outputs found

    Midgut microbiota of the malaria mosquito vector Anopheles gambiae and Interactions with plasmodium falciparum Infection

    Get PDF
    The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.Institut de Recherche pour le Developpement (IRD); French Agence Nationale pour la Recherche [ANR-11-BSV7-009-01]; European Community [242095, 223601]info:eu-repo/semantics/publishedVersio

    Clustered Gene Expression Changes Flank Targeted Gene Loci in Knockout Mice

    Get PDF
    Gene expression profiling using microarrays is a powerful technology widely used to study regulatory networks. Profiling of mRNA levels in mutant organisms has the potential to identify genes regulated by the mutated protein.Using tissues from multiple lines of knockout mice we have examined genome-wide changes in gene expression. We report that a significant proportion of changed genes were found near the targeted gene.The apparent clustering of these genes was explained by the presence of flanking DNA from the parental ES cell. We provide recommendations for the analysis and reporting of microarray data from knockout mice

    Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration

    Get PDF
    Pathological conditions affecting skeletal muscle function may lead to irreversible volumetric muscle loss (VML). Therapeutic approaches involving acellular matrices represent an emerging and promising strategy to promote regeneration of skeletal muscle following injury. Here we investigated the ability of three different decellularised skeletal muscle scaffolds to support muscle regeneration in a xenogeneic immune-competent model of VML, in which the EDL muscle was surgically resected. All implanted acellular matrices, used to replace the resected muscles, were able to generate functional artificial muscles by promoting host myogenic cell migration and differentiation, as well as nervous fibres, vascular networks, and satellite cell (SC) homing. However, acellular tissue mainly composed of extracellular matrix (ECM) allowed better myofibre three-dimensional (3D) organization and the restoration of SC pool, when compared to scaffolds which also preserved muscular cytoskeletal structures. Finally, we showed that fibroblasts are indispensable to promote efficient migration and myogenesis by muscle stem cells across the scaffolds in vitro. This data strongly support the use of xenogeneic acellular muscles as device to treat VML conditions in absence of donor cell implementation, as well as in vitro model for studying cell interplay during myogenesis

    High resolution structural evidence suggests the Sarcoplasmic Reticulum forms microdomains with acidic stores (lysosomes) in the heart

    Get PDF
    Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) stimulates calcium release from acidic stores such as lysosomes and is a highly potent calcium-mobilising second messenger. NAADP plays an important role in calcium signalling in the heart under basal conditions and following β-adrenergic stress. Nevertheless, the spatial interaction of acidic stores with other parts of the calcium signalling apparatus in cardiac myocytes is unknown. We present evidence that lysosomes are intimately associated with the sarcoplasmic reticulum (SR) in ventricular myocytes; a median separation of 20 nm in 2D electron microscopy and 3.3 nm in 3D electron tomography indicates a genuine signalling microdomain between these organelles. Fourier analysis of immunolabelled lysosomes suggests a sarcomeric pattern (dominant wavelength 1.80 μm). Furthermore, we show that lysosomes form close associations with mitochondria (median separation 6.2 nm in 3D studies) which may provide a basis for the recently-discovered role of NAADP in reperfusion-induced cell death. The trigger hypothesis for NAADP action proposes that calcium release from acidic stores subsequently acts to enhance calcium release from the SR. This work provides structural evidence in cardiac myocytes to indicate the formation of microdomains between acidic and SR calcium stores, supporting emerging interpretations of NAADP physiology and pharmacology in heart

    Identification of Rothia Bacteria as Gluten-Degrading Natural Colonizers of the Upper Gastro-Intestinal Tract

    Get PDF
    Gluten proteins, prominent constituents of barley, wheat and rye, cause celiac disease in genetically predisposed subjects. Gluten is notoriously difficult to digest by mammalian proteolytic enzymes and the protease-resistant domains contain multiple immunogenic epitopes. The aim of this study was to identify novel sources of gluten-digesting microbial enzymes from the upper gastro-intestinal tract with the potential to neutralize gluten epitopes.Oral microorganisms with gluten-degrading capacity were obtained by a selective plating strategy using gluten agar. Microbial speciations were carried out by 16S rDNA gene sequencing. Enzyme activities were assessed using gliadin-derived enzymatic substrates, gliadins in solution, gliadin zymography, and 33-mer α-gliadin and 26-mer γ-gliadin immunogenic peptides. Fragments of the gliadin peptides were separated by RP-HPLC and structurally characterized by mass spectrometry. Strains with high activity towards gluten were typed as Rothia mucilaginosa and Rothia aeria. Gliadins (250 µg/ml) added to Rothia cell suspensions (OD(620) 1.2) were degraded by 50% after ∼30 min of incubation. Importantly, the 33-mer and 26-mer immunogenic peptides were also cleaved, primarily C-terminal to Xaa-Pro-Gln (XPQ) and Xaa-Pro-Tyr (XPY). The major gliadin-degrading enzymes produced by the Rothia strains were ∼70-75 kDa in size, and the enzyme expressed by Rothia aeria was active over a wide pH range (pH 3-10).While the human digestive enzyme system lacks the capacity to cleave immunogenic gluten, such activities are naturally present in the oral microbial enzyme repertoire. The identified bacteria may be exploited for physiologic degradation of harmful gluten peptides

    A survey of visualization tools for biological network analysis

    Get PDF
    The analysis and interpretation of relationships between biological molecules, networks and concepts is becoming a major bottleneck in systems biology. Very often the pure amount of data and their heterogeneity provides a challenge for the visualization of the data. There are a wide variety of graph representations available, which most often map the data on 2D graphs to visualize biological interactions. These methods are applicable to a wide range of problems, nevertheless many of them reach a limit in terms of user friendliness when thousands of nodes and connections have to be analyzed and visualized. In this study we are reviewing visualization tools that are currently available for visualization of biological networks mainly invented in the latest past years. We comment on the functionality, the limitations and the specific strengths of these tools, and how these tools could be further developed in the direction of data integration and information sharing

    Host Genes Related to Paneth Cells and Xenobiotic Metabolism Are Associated with Shifts in Human Ileum-Associated Microbial Composition

    Get PDF
    The aim of this study was to integrate human clinical, genotype, mRNA microarray and 16 S rRNA sequence data collected on 84 subjects with ileal Crohn’s disease, ulcerative colitis or control patients without inflammatory bowel diseases in order to interrogate how host-microbial interactions are perturbed in inflammatory bowel diseases (IBD). Ex-vivo ileal mucosal biopsies were collected from the disease unaffected proximal margin of the ileum resected from patients who were undergoing initial intestinal surgery. Both RNA and DNA were extracted from the mucosal biopsy samples. Patients were genotyped for the three major NOD2 variants (Leufs1007, R702W, and G908R) and the ATG16L1T300A variant. Whole human genome mRNA expression profiles were generated using Agilent microarrays. Microbial composition profiles were determined by 454 pyrosequencing of the V3–V5 hypervariable region of the bacterial 16 S rRNA gene. The results of permutation based multivariate analysis of variance and covariance (MANCOVA) support the hypothesis that host mucosal Paneth cell and xenobiotic metabolism genes play an important role in host microbial interactions

    Extending Epigenesis: From Phenotypic Plasticity to the Bio-Cultural Feedback

    Get PDF
    The paper aims at proposing an extended notion of epigenesis acknowledging an actual causal import to the phenotypic dimension for the evolutionary diversification of life forms. Section 1 offers introductory remarks on the issue of epigenesis contrasting it with ancient and modern preformationist views. In Section 2 we propose to intend epigenesis as a process of phenotypic formation and diversification a) dependent on environmental influences, b) independent of changes in the genomic nucleotide sequence, and c) occurring during the whole life span. Then, Section 3 focuses on phenotypic plasticity and offers an overview of basic properties (like robustness, modularity and degeneracy) that allows biological systems to be evolvable – i.e. to have the potentiality of producing phenotypic variation. Successively (Section 4), the emphasis is put on environmentally-induced modification in the regulation of gene expression giving rise to phenotypic variation and diversification. After some brief considerations on the debated issue of epigenetic inheritance (Section 5), the issue of culture (kept in the background of the preceding sections) is considered. The key point is that, in the case of humans and of the evolutionary history of the genus Homo at least, the environment is also, importantly, the cultural environment. Thus, Section 6 argues that a bio-cultural feedback should be acknowledged in the “epigenic” processes leading to phenotypic diversification and innovation in Homo evolution. Finally, Section 7 introduces the notion of “cultural neural reuse”, which refers to phenotypic/neural modifications induced by specific features of the cultural environment that are effective in human cultural evolution without involving genetic changes. Therefore, cultural neural reuse may be regarded as a key instance of the bio-cultural feedback and ultimately of the extended notion of epigenesis proposed in this work
    corecore