182 research outputs found
Sensitivity analysis for models with dynamic inputs: a case study to control the heat consumption of a real passive house
International audienceIn this communication, we perform the sensitivity analysis of a building energy model. The aim is to assess the impact of the weather data on the performance of a model of a passive house, in order to better control it. The weather data are uncertain dynamic inputs to the model. To evaluate their impact, the problem of generating coherent weather data arises. To solve it, we carry out the Karhunen-Loève decomposition of the uncertain dynamic inputs. We then propose an approach for the sensitivity analysis of this kind of models. The originality for sensitivity analysis purpose is to separate the random variable of the dynamic inputs, propagated to the model response, from the deterministic spatio/temporal function. This analysis highlights the role of the solar gain on a high-insulated passive building, during winter time
Sensitivity analysis of complex models: coping with dynamic and static inputs
International audienceIn this paper, we address the issue of performing sensitivity analysis of complex models presenting uncertain static and dynamic inputs. The dynamic inputs are viewed as random processes which can be represented by a linear combination of the deterministic functions depending on time whose coefficients are uncorrelated random variables. To achieve this, the Karhunen-Loève decomposition of the dynamic inputs is performed. For sensitivity analysis purposes, the influence of the dynamic inputs onto the model response is then given by the one of the uncorrelated random coefficients of the Karhunen-Loève decomposition, which is the originality here. The approach is applied to a building energy model, in order to assess the impact of the uncertainties of the material properties and the weather data on the energy performance of a real low energy consumption house
UASA of complex models: Coping with dynamic and static inputs
International audienceUncertainty Analysis and Sensitivity Analysis of complex models: Coping with dynamic and static input
Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit
In this work we explore the transmission properties of a single slit in a
metallic screen. We analyze the dependence of these properties on both slit
width and angle of incident radiation. We study in detail the crossover between
the subwavelength regime and the geometrical-optics limit. In the subwavelength
regime, resonant transmission linked to the excitation of waveguide resonances
is analyzed. Linewidth of these resonances and their associated electric field
intensities are controlled by just the width of the slit. More complex
transmission spectra appear when the wavelength of light is comparable to the
slit width. Rapid oscillations associated to the emergence of different
propagating modes inside the slit are the main features appearing in this
regime.Comment: Accepted for publication in Phys. Rev.
Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides
We study the generation of entanglement between two distant qubits mediated
by the surface plasmons of a metallic waveguide. We show that a V-shaped
channel milled in a flat metallic surface is much more efficient for this
purpose than a metallic cylinder. The role of the misalignments of the dipole
moments of the qubits, an aspect of great importance for experimental
implementations, is also studied. A careful analysis of the quantum-dynamics of
the system by means of a master equation shows that two-qubit entanglement
generation is essentially due to the dissipative part of the effective
qubit-qubit coupling provided by the surface plasmons. The influence of a
coherent external pumping, needed to achieve a steady state entanglement, is
discussed. Finally, we pay attention to the question of how to get information
experimentally on the degree of entanglement achieved in the system.Comment: 13 pages, 12 figure
Rigorous evaluation of propagation losses in arbitrarily shaped waveguide structures using boundary integral resonant mode expansion and perturbation of boundary conditions
This paper is a preprint of a paper submitted to IET Microwaves Antennas and Propagation and is subject to Institution of Engineering and Technology Copyright. If accepted, the copy of record will be available at IET Digital LibraryThe accurate consideration of propagation losses in arbitrarily shaped waveguide-based structures is studied in this paper. For such a purpose, a software tool based on the perturbation of the boundary conditions on the waveguide metallic walls and on the boundary integral resonant mode expansion method has been developed. To show the advantages of the proposed technique with respect to the classic power-loss method, the complex propagation wavenumbers of a double ridge and an elliptical waveguide have been first computed and compared with results of a commercial software based on the finite element technique. Next a circular, a sectorial shaped and a triangular shaped waveguide have been considered. Then, a computer-aided design software package based on this modal analysis tool has been applied to predict the propagation loss effects in complex waveguide structures, such as an evanescent mode ridge waveguide filter, a traditional dual mode filter with circular cavities and a twist component for K-band applications.This work has been supported by the Ministerio de Economia y Competitividad (MINECO), Spanish Government, by the coordinated R&D project TEC 2010-21520-C04 and the Grant JC 2009-0221, and by University of Alicante under the project GRE 10-22.Marini, S.; Soto Pacheco, P.; Mattes, M.; Gimeno Martinez, B.; Bleda Pérez, S.; Vidal Pantaleoni, A.; Boria Esbert, VE. (2014). Rigorous evaluation of propagation losses in arbitrarily shaped waveguide structures using boundary integral resonant mode expansion and perturbation of boundary conditions. IET Microwaves Antennas and Propagation. 8(12):980-989. https://doi.org/10.1049/iet-map.2013.0414S98098981
Hydromechanical modelling of shaft sealing for CO2 storage
The geological sequestration of CO2 in abandoned coal mines is a promising option to mitigate climate changes while providing sustainable use of the underground cavities. In order to certify the efficiency of the storage, it is essential to understand the behaviour of the shaft sealing system. The paper presents a numerical analysis of CO2 transfer mechanisms through a mine shaft and its sealing system. Different mechanisms for CO2 leakage are considered, namely multiphase flow through the different materials and flow along the interfaces between the lining and the host rock. The study focuses on the abandoned coal mine of Anderlues, Belgium, which was used for seasonal storage of natural gas. A two-dimensional hydromechanical modelling of the storage site is performed and CO2 injection into the coal mine is simulated. Model predictions for a period of 500 years are presented and discussed with attention. The role and influence of the interface between the host rock and the concrete lining are examined. In addition the impact of some uncertain model parameters on the overall performance of the sealing system is analysed through a sensitivity analysis
Macroscopic superposition states of ultracold bosons in a double-well potential
We present a thorough description of the physical regimes for ultracold
bosons in double wells, with special attention paid to macroscopic
superpositions (MSs). We use a generalization of the Lipkin-Meshkov-Glick
Hamiltonian of up to eight single particle modes to study these MSs, solving
the Hamiltonian with a combination of numerical exact diagonalization and
high-order perturbation theory. The MS is between left and right potential
wells; the extreme case with all atoms simultaneously located in both wells and
in only two modes is the famous NOON state, but our approach encompasses much
more general MSs. Use of more single particle modes brings dimensionality into
the problem, allows us to set hard limits on the use of the original two-mode
LMG model commonly treated in the literature, and also introduces a new mixed
Josephson-Fock regime. Higher modes introduce angular degrees of freedom and MS
states with different angular properties.Comment: 15 pages, 8 figures, 1 table. Mini-review prepared for the special
issue of Frontiers of Physics "Recent Progresses on Quantum Dynamics of
Ultracold Atoms and Future Quantum Technologies", edited by Profs. Lee, Ueda,
and Drummon
Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures
Plasmonic structures open novel avenues in photodetector development. Optimized illumination configurations are reported to improve p-polarized light absorptance in superconducting-nanowire single-photon detectors (SNSPDs) comprising short- and long-periodic niobium-nitride (NbN) stripe-patterns. In OC-SNSPDs consisting of ~quarter-wavelength dielectric layer closed by a gold reflector the highest absorptance is attainable at perpendicular incidence onto NbN patterns in P-orientation due to E-field concentration at the bottom of nano-cavities. In NCAI-SNSPDs integrated with nano-cavity-arrays consisting of vertical and horizontal gold segments off-axis illumination in S-orientation results in polar-angle-independent perfect absorptance via collective resonances in short-periodic design, while in long-periodic NCAI-SNSPDs grating-coupled surface waves promote EM-field transportation to the NbN stripes and result in local absorptance maxima. In NCDAI-SNSPDs integrated with nano-cavity-deflector-array consisting of longer vertical gold segments large absorptance maxima appear in 3p-periodic designs due to E-field enhancement via grating-coupled surface waves synchronized with the NbN stripes in S-orientation, which enable to compensate fill-factor-related retrogression.United States. Dept. of Energy (Frontier Research Centers
- …