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émanant des établissements d’enseignement et de
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ABSTRACT: In this communication, we perform the sensitivity analysis of a building energy model. The aim is to

assess the impact of the weather data on the performance of a model of a passive house, in order to better control

it. The weather data are uncertain dynamic inputs to the model. To evaluate their impact, the problem of generating

coherent weather data arises. To solve it, we carry out the Karhunen-Loève decomposition of the uncertain dynamic

inputs. We then propose an approach for the sensitivity analysis of this kind of models. The originality for sensitivity

analysis purpose is to separate the random variable of the dynamic inputs, propagated to the model response, from the

deterministic spatio/temporal function. This analysis highlights the role of the solar gain on a high-insulated passive

building, during winter time.
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1 INTRODUCTION

Nowadays, one important feature when designing

high-performance buildings is to reduce the energy

consumption, for economical but also for environmental

purposes. Thus, it appears a need of strategy to better

control and optimize the heat consumption of houses.

In this framework, softwares for building performance

simulation are developed and are constantly updated due

to the evolution of materials, techniques, ... This leads

to complex, high-dimensional and multi-physics models,

presenting uncertain inputs due to measurements, expert

judgements. Thus, the problem of their reliability arises.

To assess it, it requires some tools to better understand

the influence of the parameters responsible for the heat

consumption in order to control it. Uncertainty and

sensitivity analyses (UASA) can help answering it and

evaluating the impact of this lack of knowledge onto the

model responses [15, 7, 22]. Uncertainty analysis aims

at quantifying the overall uncertainty within a model and

sensitivity analysis aims at determining the most influent

input parameters onto the model response. Numerous

studies have focused on the sensitivity analysis for static

non-linear models, i.e. presenting static inputs, for

example [22, 1, 3, 5, 8, 24]. The approaches may be

local or global. Local approaches help to determine the

impact of a small input variation around a nominal value

[28]. Global approaches also allow the determination

of the same impact but by varying the input in its entire

range of variation. For some applications, as energy

building, it can be of great importance to consider the

entire uncertainty range of inputs since they can vary

within large intervals depending on their meaning.

Considering only a single point in that interval as in the

case of local study may be not enough informative and

robust. Another advantage of global sensitivity analysis

is that the sensitivity estimates of individual parameters

are evaluated while all the other inputs are varied. In

this way, the relative variability of each input is taken

into account, thus revealing any existing interactions.

Global methods are often based on the analysis of the

output variance and are known as ANOVA (ANalysis

Of VAriance) techniques [13, 21]. The present study

exclusively focuses on global approaches.

Regarding building energy modeling, the literature

focuses on sensitivity analysis for building models

presenting only static inputs, for instance the thermo-

physical properties of the materials [27]. However, some

phenomena previously neglected for energy-consuming

building may become preponderant in the consumption

of low energy buildings, as the consideration of weather

data, not only the temperature but also the solar radiation,

the relative humidity, the wind speed,... But, it is expected

that meteorological inputs play a crucial role in designing

high-performance buildings. There are very few studies

concerning the influence of the weather data which

depend on time and are thus seen as dynamic uncertain
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inputs for the models. This can be explained by the fact

that generating coherent weather data randomly is not

obvious. One solution is to use experimental measure

but it involves a large amount of data, too expensive to

manage. Thus, an alternative is to create representative

long-term weather data file [4]. But, while generating

static inputs samples is not an issue, it is not straightfor-

ward to generate samples that satisfy the desired random

fields distribution.

The aim of this study is then to assess the impact of the

weather data on the heat consumption of a real passive

house. This problem is challenging because it involves the

one of the sensitivity analysis for models with uncertain

dynamic inputs. Such an issue is rarely addressed (except,

for instance, in [16]).

The uncertain static inputs can be seen as random

variables defined by their marginal distribution and

the dynamic ones as random fields, defined by their

covariance function. The random variables can then be

generated using a random sampling method, for instance

the Latin Hypercube random sampling [12]. A random

field can be represented as a series expansion involving a

complete set of deterministic functions with correspond-

ing random coefficients [23, 11, 29], as the truncated

Karhunen-Loève (KL) expansion [14, 20]. KL series

expansion is based on the eigen-decomposition of the

covariance function, involving orthogonal deterministic

basis functions and the orthogonal uncorrelated random

coefficients. This allows the optimal encapsulation of the

information contained in the random process into a set of

discrete uncorrelated random variables.

The originality of the proposed approach is to separate the

random variable of the dynamic inputs, propagated to the

model response, from the deterministic spatio/temporal

function, using Karhunen-Loève decomposition of the

dynamic inputs. Then, for the SA, the influence of the

dynamic inputs onto the model response is given by the

one of the random coefficients of the Karhunen-Loève

decomposition. For the estimation of their sensitivity

indices, the Sobol’ method is applied [24]. The proposed

approach is then applied to a building energy model to

quantify the impact of each weather data input on the

performance of a real passive house.

The paper is organized as follows. In Section 2, the

energy building model which is studied is described.

Then, Section 3 is focused on the generation of coherent

weather data. In Section 4, sensitivity analysis for static

inputs is recalled and then is extended to dynamic inputs.

Finally, Section 5 presents the results obtained.

2 ENERGY BUILDING MODEL

The building energy model studied in this work represents

a real building located on an experimental platform named

INCAS, introduced by the National Institute of Solar

Energy and located in Le Bourget Du Lac, in France.

This place presents a temperate continental climate with

alpine influence. The building is a single-detached house

with low energy consumption (figure 1). The house is

double-glazed. The thickness of the wall is 50 cm, made

of 15 cm of perpend, 20 cm of insulating material and

again 15 cm of perpend. The house contains hundreds

of sensors to quantify its thermal behavior. Details about

the house can be found in [25]. The building is divided

North

South

EastWest

Figure 1: INCAS house

into several thermal zones, but only the ground floor and

the first floor are studied. The solar gains are maximized

in winter and minimized in summer thanks to the glazed

surfaces distribution and solar shading. The goal of the

study is to quantify and characterize the capacity of the

building to exploit environmental energy gain.

The output of interest is the heating consumption at the

ground and at the first floors. The uncertain dynamic

inputs are the outdoor air temperature, the direct and the

diffuse solar radiations, the speed and the direction of

wind and the relative humidity.

A previous study [10], not presented here, has focused on

the statistical analysis of the weather data. One month

of january that is representative of typical winter from

20 years of observations has been used, since the heat

consumption is the highest and the most costly, during

this period of time, at this place. Moreover, considering

only one season allows to respect stationarity of data.

The statistical characteristics of a given input are the

covariance function and the hourly mean, on one day. The

next section describes how to generate coherent weather

data randomly.

3 WEATHER DATA GENERATION

The weather data are considered as the uncertain

dynamic inputs of the model. Let denote them as

ωd(θ ,x) = {ωd
1 (θ ,x), . . . ,ω

d
Nd
(θ ,x)}. Here Nd = 6. The

stochastic variable θ is used to indicate the randomness
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of the input ωd . The variable x represents the time

dependence of ωd but for some other applications, it can

also represent a space dependence. The random fields

ωd
i are assumed independent and normally distributed

with mean ω̄i
d(x) and a covariance function Ci(x1,x2),

i = 1, . . . ,Nd , Nd denoting the number of dynamic inputs.

The covariance function Ci(x1,x2) is symmetric, positive

definite.

According to [20], the random fields ωd
i , having a

mean ω̄i
d(x) and a finite variance σ2

i , can be approxi-

mated using the truncated KL series:

ωd
i (x,θ)≃ ω̄i

d(x)+
Mi

∑
ki=1

√
λ kiξki(θ) fki(x) (1)

where λki and fki are the deterministic eigenvalues and

eigenfunctions of the covariance function Ci(x1,x2), ξi is

a set of independent standard normal variables and Mi is

the number of KL-terms. In practice, we retain the first

Mi eigenmodes that contain the 95% of the variance of the

input ωd
i . The number of eigenmodes retained depends

on the choice of the covariance function and may be very

different from one input to another.

The key feature for simulating random fields using KL

expansion lies on the ability to determine accurately the

eigenvalues and eigenfunctions of the covariance func-

tion. They are given from the spectral decomposition of

the covariance function Ci(x1,x2), requiring to solve the

homogeneous Fredholm integral equation of the second

kind given by:

∫

D

Ci(x1,x2) fki(x1)dx1 = λki fki(x2) (2)

For some covariance functions (first-order Markov or

Wiener-Levy processes, for example), the equation (2)

can be twice differentiable with respect to x1. The

resulting differential equation can be solved analytically

and eigenvalues can be obtained as well. But in most

cases, solving equation (2) requires numerical methods,

such as the Galerkin one [9]. The Galerkin approach

consists of finding a functional basis for the solution

space of the equation, then projecting the solution on

the functional basis, and minimizing the residual with

respect to the functional basis. Very often, the bases are

polynomial or trigonometric. Representation of integral

operators using polynomial or trigonometric bases re-

quires approximate integration quadratures. This can be

very costly to compute. To avoid tedious quadratures

and alleviating computational effort, an alternative is

to use a wavelet-Galerkin approach [20, 17]. In this

case, the representation of integral operators is made in

wavelet basis and can be performed without numerical

integration, as detailed in the Appendix. The comparison

of wavelet-Galerkin method with other available methods

in solving the Fredholm integral equation can be found in

[14].

Once the weather data are generated, the sensitivity

analysis can be performed as explained in the next

section.

4 SENSITIVITY ANALYSIS

First, let recall the way of performing sensitivity analysis

of a model presenting static inputs. To do so, consider the

following model:

y(θ) = g(ωs(θ)) (3)

where y ∈ R
m is the model response of interest, ωs =

{ωs
1, . . . ,ω

s
Ns
} is a set of Ns random variables (static in-

puts) and g a nonlinear function. In the following, we

assume that random variables ωs
i are independent and de-

fined by their marginal distribution. They can be gener-

ated using a random sampling, Latin Hypercube sampling

scheme, for instance, for its ease of implementation, [12].

The effect of the uncertain inputs ωs
i onto y j (y j ∈ R) can

be estimated with sampling-based methods such as Sobol’

method [24]. The first-order sensitivity index of the input

ωs
i to the model output y j is given by:

Si =
V (E(y j|ωs

i ))

V (y j)
(4)

where V (E(y j|ωs
i )) is the variance of the conditional

expectation of y j when ωs
i is set and V (y j) is the total

variance of the output y j. The first order sensitivity

index Si represents the main effect of the input ωs
i which

corresponds to its contribution alone. The value of Si lies

between 0 and 1. The closer to 1 its value is, the more

input ωs
i contributes to the total variance of the output.

Sensitivity indices of higher order can also be computed

to assess the influence of the input interactions but it is

not presented here, see [22] for more details.

Some models may be complex with a high number of

inputs so that analytical calculations of the previous

sensitivity index become time consuming or even impos-

sible. It is therefore necessary to estimate them. Some

approaches have been proposed in the literature, based

on Monte Carlo simulations or spectral expansion of the

output [5, 2, 6, 8, 26]. The estimator considered in this

study is provided by [16] and the procedure to compute

it from few samples to reduce the computational cost is

recalled below.

With the method originally proposed in [24], Ns + 1

samples are necessary to compute the main effects of

the Ns inputs. To reduce the simulation cost, a method

proposed in [18] has been used, requiring only two

samples.

Consider a first sample of inputs with K points, denoted
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ωs1:

ωs1 =









ωs1
11 · · · ωs1

1K

ωs1
21 · · · ωs1

2K

· · · · · · · · ·
ωs1

Ns1 · · · ωs1
NsK









(5)

The model is evaluated with this first input samples, lead-

ing to the output y(1) of dimension m×K, m components

of the output, each with K sample points:

y(1) =











y
(1)
11 · · · y

(1)
1K

y
(1)
21 · · · y

(1)
2K

· · · · · · · · ·
y
(1)
m1 · · · y

(1)
mK











(6)

Associate a random permutation function RPi to each in-

put ωs
i . A second set, denoted ωs2, is built from ωs1 by

permuting its values.

ωs2 =









RP1(ω
s1
11) · · · RP1(ω

s1
1K)

RP2(ω
s1
21) · · · RP2(ω

s1
2K)

· · · · · · · · ·
RPNs(ω

s1
Ns1) · · · RPNs(ω

s1
NsK)









(7)

Then, the model is evaluated with this second set of input

samples, to obtain y(2):

y(2) =











y
(2)
11 · · · y

(2)
1K

y
(2)
21 · · · y

(2)
2K

· · · · · · · · ·
y
(2)
m1 · · · y

(2)
mK











(8)

where y
(2)
j = RPi(y

(1)
j ) and RPi is the random permutation

function associated to the input ωs
i .

To compute the first order sensitivity index (4) cor-

responding to the effect of ωs
i , the values of y(1) are

rearranged according to the corresponding permutation

RPi. In this way, it is as the output y has been obtained

when all the input factors are varying except the one of

interest ωs
i .

Let define ‖ y j ‖2= y j.y j, where y j is a K-dimensional

vector and the symbol (.) denotes the scalar product

of two vectors. The following result gives a way for

computing the first-order sensitivity index to the output y j.

Ŝi =
(y

(1)
j − f (1)u).(RP−1

i (y
(2)
j )− f (2)u)

‖ y
(1)
j − f (1)u ‖‖ RP−1

i (y
(2)
j )− f (2)u ‖

(9)

with

f (1) =
1

K

K

∑
k=1

y
(1)
jk and f (2) =

1

K

K

∑
k=1

RP−1
i (y

(2)
jk ) (10)

and u the vector of K components equal to 1.

In the case of model presenting dynamic inputs, the

problem of determining this sensitivity index is much

more complex. In this case, the key point is to generate

coherent samples of the dynamic input satisfying the

desired random fields distribution. As explained in

Section 3, the random fields can be decomposed using the

KL expansion (1). The influence of the dynamic inputs

can then be analyzed through the one of the random

coefficients of the KL expansion. The sensitivity analysis

is therefore performed as for static inputs, as explained

below.

Now consider the following model:

y(x,θ) = g(ωd(x,θ),ωs(θ),x) (11)

where y ∈ R
m is the model response of interest, x ∈

D is the spatial/time variable, ωd = {ωd
1 , . . . ,ω

d
Nd
} is

a set of Nd random fields (dynamic inputs) and ωs =
{ωs

1, . . . ,ω
s
Ns
} is a set of Ns random variables (static in-

puts). As previously, we assume that random variables

ωs
i are independent and defined by their marginal distri-

bution.

The first step is to generate samples for the dynamic inputs

using the KL decomposition of ωd , as detailed in Section

3. Once the eigenmodes are obtained for all the dynamic

inputs ωd
i (x,θ) using (1), the influence of ωd

i (x,θ) is then

given by the one of the random coefficients ξki propagated

to y(x,θ). Consider the Mi-dimensional random coeffi-

cient ξi, grouping the Mi modes of the input ωd
i :

ξi = {ξ1i, . . . ,ξMii} (12)

Thus, SA of the model output y(x,θ) is performed

through the random vectors {ξ1, . . . ,ξNd
,ωs}, with ξi

given by (12). Consequently, the effect of the group of

factors ξi is the one of the dynamic input ωd
i and so on.

Thus, considering the static and the dynamic inputs of the

model, there is Ns +
Nd

∑
i=1

Mi inputs in all to analyze.

The sensitivity indices of the group of factors ξi =
{ξ1i, . . . ,ξMii} can be computed as:

Si =
V (E(y j|ξ1i, . . . ,ξMii))

V (y j)
(13)

where V (E(y j|ξ1i, . . . ,ξMii)) is the variance of the con-

ditional expectation of y j when ξ1i, ξ2i, . . . and ξMii are

set. This sensitivity index can be estimated as explained

previously.

The sensitivity of ωs can then be computed using (4) and

the estimator (9), as presented previously.

The proposed approach is applied to the energy building

model presented in Section 2.

5 RESULTS

Consider the energy building model of Section 2. The

model output y = {y1,y2} is the ideal heating consump-



MOSIM14 - November 5-7-2014 - Nancy - France

tion at the ground floor (y1) and at the first floor (y2). The

daily consumptions are summed over one month, in such

a way that the output y does no longer depend on time.

However, the inputs ωd are still depending on time. They

represent the outdoor air temperature (ωd
1 ), the direct and

the diffuse solar radiations (ωd
2 and ωd

3 ), the speed and

the direction of wind (ωd
4 and ωd

5 ) and the humidity (ωd
6 ).

There is no static inputs for this study.

From the hourly mean ω̄d
i and the covariance function

Ci(x1,x2), the sample generation of the dynamic inputs

ωd can be carried out, as explained in Section 3, using

the Fast Haar wavelet algorithm (see the appendix). To

do so, Matlab software has been used. This leads here

to 512 modes for each of the 6 inputs, that is Mi = 512,

∀i = {1, . . . ,6}. Then, the model is simulated with the

generated inputs, using the dedicated software Energy-

Plus.

It can be noticed that the heat consumption is higher at

the first floor than at the ground floor. The two thermal

zones under study have the same volume but there is more

glass surface at the ground floor. Thus, it may be assumed

that the solar gain is more important at this floor, during

winter.

The sensitivity indices are computed as explained in

Section 4. The 512 ξi j of a given input are grouped to-

gether. Thus, there is 6 sensitivity indices Si to compute,

according to (13). To do so, the estimator (9) has been

used. Moreover, we take the advantage of the random

permutation trick explained in Section 4, which requires

only two samples, here of K = 1000 points, allowing

to reduce the computational cost. For this computation,

Matlab software has been used.

Figure 2 shows the dispersion of the consumption.
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Figure 2: Dispersion of the heat consumption for the

ground floor (1) and for the first floor (2)

Figure 3 represents the sensitivity indices for each input.

For the ground floor, the outdoor temperature and the

solar radiation have almost the same sensitivity index
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Figure 3: Sensitivity indices for the 6 inputs, at the ground

floor (1) and at the first floor (2)

(S1 = 0.46 and S2 = 0.52). This means that they influence

the consumption almost in the same way, but with a

slightly prevalence of the solar radiation. Besides, for

the first floor, the outdoor temperature has a sensitiv-

ity index of S1 = 0.76, explaining almost 80% of the

consumption, compared to low influence of the solar

radiation (S2 = 0.23). On the other hand, the sensitivity

indices of the humidity, diffuse radiation, velocity and

direction of wind can be neglected showing that they are

not influential. Note that small sensitivity indices can

be negative because of the numerical approximation of

the estimator considered. It is worth noting that these

inputs are not influential in the studied model. This

conclusion can be different for other models, in the way

these variables are taken into account for the calculation

of the energy balance. For example, humidity is not

relevant here because the ideal heating device considered

does not account for the impact of the humidity onto the

consumption.

It can be noticed that the sum of the six sensitivity indices

is almost one, showing no interaction between the inputs.

In conclusion, there is two significant weather inputs,

the solar radiation and the outdoor temperature with

different influences according to the given floor. These

results highlight the capacity of the INCAS house to

exploit the solar gains during winter, especially at the

ground floor. Indeed, the solar radiation has a greater

impact on a high-insulated passive building than on an

energy-consuming one. This is relevant to minimize the

heat consumption during winter in this low energy house.

6 CONCLUSION

In this paper, the impact of the weather data on the energy

consumption of a passive house has been quantified. This

has raised the problem of the generation of coherent

weather data. The proposed solution is based on the KL

decomposition of the dynamic inputs. An approach for

sensitivity analysis of models presenting dynamic inputs
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has been proposed. The originality is to separate the

random coefficients of the input propagated to the output

from the spatio/temporal function.

The study has shown that the outdoor temperature and the

solar radiation are of prime importance for the INCAS

house to reduce the heat consumption. It underlines

the capacity of the INCAS house to exploit the solar

gains during winter and to confirm its passive strategy

to earn energy. This analysis helps to better understand

the weather data influence for the heat consumption of a

real passive house. It also helps to optimize the capacity

of the building to exploit free energy resources. It is

worth noting that the results depend on the building of

interest (single-detached or terraced house, private or

industrial building, ...), its orientation, the climate where

it is located. SA can be seen here as a methodology

to characterize the ability of low efficiency building to

exploit free resources of the environment.

The next step is to study the influence of both static

and dynamic inputs for the heat consumption, the static

inputs representing the thermophysical properties of the

materials.

Appendix

Using the wavelet-Galerkin approach, the covariance

function Ci(x1,x2) can be expanded as, in the wavelet

bases:

Ci(x1,x2) =
N

∑
k=0

N

∑
j=0

Ak jψk(x1)ψ j(x2) = ΨT (x1)AΨ(x2)

(14)

where A is an N ×N matrix representing the 2D wavelet

transform of Ci(x1,x2). The components Ak j of the matrix

A are then given by:

Ak j =
1

hkh j

∫ 1

0

∫ 1

0
Ci(x1,x2)ψk(x2)ψ j(x1)dx1dx2 (15)

where the functions ψk, k = 1, . . . ,N, are Daubechies’

wavelets and hk defined by:

hk =
∫ 1

0
ψ2

k (x)dx (16)

We consider the Haar wavelets, the simplest family of

Daubechies’ wavelets. The Haar mother wavelet is de-

fined by:

ψ(x) =







1 if x ∈ [0;0.5[
−1 if x ∈ [0.5;1[
0 otherwise

(17)

A family of orthogonal Haar wavelets over the domain

[0;1] can be generated by shifting and scaling the mother

wavelet:

ψ0(x) = 1

ψk(x) = 2a/2ψ(2ax−b), a,b ∈ Z

k = 2a +b, b = 0,1, . . . ,2a −1, a = 0,1, . . . ,m−1

(18)

where a and b are the dilation and translational integer

constants, m the maximum wavelet level, related to N by

N = 2m.

The double integral of (15) corresponds to the 2D wavelet

transform of Ci(x1,x2) and does not require numerical in-

tegration. To carry out this 2D wavelet transform, the 1D

wavelet transform is applied first on the rows and then

on the columns of the matrix containing the values of

Ci(x1,x2) sampled over a N by N grid. The different steps

to perform the 1D Haar wavelet transform are recalled be-

low. For further details, see [19, 20].

1. Consider a function F(x) (here the rows of

Ci(x1,x2)).

Sample F(x) at N discrete points xi =
2i+1

2N
, i =

0, . . . ,N−1. The samples are denoted Fi and N = 2m

with m the maximum level of the wavelet, set a priori.

2. Initialize a N × 1 vector denoted am,k with the sam-

ples of F as follows:

am,k = Fk, k = 0, . . . ,N −1 (19)

3. The vector is processed using an inverse binary tree,

where the topmost layer (mth) contains N nodes with

values given by (19). The nodal values in subsequent

layers are computed as:

a j,k =
1

2
(a j+1,2k +a j+1,2k+1) (20)

with k = 0,1, . . . ,2 j −1 and j = m−1, . . . ,1,0.

4. The wavelet coefficients are evaluated from the nodal

values in this binary tree:

c j,k =
1

2
(a j+1,2k −a j+1,2k+1) (21)

5. Finally, the wavelet coefficients are given by

[a0,0,c1, . . . ,cN−1], with:

ci = c j,k, i = 2 j + k (22)

where k = 0,1, . . . ,2 j −1 and j = 0,1, . . . ,m−1.

6. The function F(x) can then be approximated as:

F(x) = a0,0ψ0(x)+
N−1

∑
i=1

ciψi(x) (23)

with ψi(x) the Haar wavelets.

To solve (2), the eigenfunctions fki are approximated by

Haar wavelet series:

fki(x) =
N−1

∑
j=0

d
(ki)
j ψ j(x) = ΨT (x)D(ki) (24)
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where D(ki) a N × 1 matrix whose components are the

wavelet coefficients d
(ki)
j and ΨT (x) is the vector of com-

ponents ψi(x). Substituting equations (14) and (24) into

equation (2) gives the following relation:

λkiΨ
T (x)D(ki) = ΨT (x)AHD(ki) (25)

where H is diagonal matrix of constants hk due to the or-

thogonality condition. This leads to a finite dimensional

eigenvalue problem of the form λkiD
(ki) = AHD(ki), which

can be solved easily using an eigenvalue solver.
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