10 research outputs found

    Listening to women: experiences of using closed-loop in type 1 diabetes pregnancy

    Get PDF
    Introduction: Recent high-profile calls have emphasized that women's experiences should be considered in maternity care provisioning. We explored women's experiences of using closed-loop during type 1 diabetes (T1D) pregnancy to inform decision-making about antenatal rollout and guidance and support given to future users. Methods: We interviewed 23 closed-loop participants in the Automated insulin Delivery Among Pregnant women with T1D (AiDAPT) trial after randomization to closed-loop and ∼20 weeks later. Data were analyzed thematically. Results: Women described how closed-loop lessened the physical and mental demands of diabetes management, enabling them to feel more normal and sleep better. By virtue of spending increased time-in-range, women also worried less about risks to their baby and being judged negatively by health care professionals. Most noted that intensive input and support during early pregnancy had been crucial to adjusting to, and developing confidence in, the technology. Women emphasized that attaining pregnancy glucose targets still required ongoing effort from themselves and the health care team. Women described needing education to help them determine when, and how, to intervene and when to allow the closed-loop to operate without interference. All women reported more enjoyable pregnancy experiences as a result of using closed-loop; some also noted being able to remain longer in paid employment. Conclusions: Study findings endorse closed-loop use in T1D pregnancy by highlighting how the technology can facilitate positive pregnancy experiences. To realize fully the benefits of closed-loop, pregnant women would benefit from initial intensive oversight and support together with closed-loop specific education and training. Clinical Trial Registration number: NCT04938557

    Automated closed-loop insulin delivery for the management of type 1 diabetes during pregnancy: the AiDAPT RCT

    Get PDF
    Background There are over 2000 pregnancies annually in women with type 1 diabetes in the UK. Despite recent improvements in diabetes technology, most women cannot achieve and maintain the recommended pregnancy glucose targets. Thus, one in two babies experience complications requiring neonatal care unit admission. Recent studies demonstrate that hybrid closed-loop therapy, in which algorithms adjust insulin delivery according to continuous glucose measurements, is effective for managing type 1 diabetes outside of pregnancy, but efficacy during pregnancy is unclear. Objective To examine the clinical efficacy of hybrid closed-loop compared to standard insulin therapy in pregnant women with type 1 diabetes. Design A multicentre, parallel-group, open-label, randomised, controlled trial in pregnant women with type 1 diabetes. Setting Nine antenatal diabetes clinics in England, Scotland and Northern Ireland. Participants Pregnant women with type 1 diabetes and above-target glucose levels, defined as glycated haemoglobin A1c of ≥ 48 mmol/mol (6.5%) in early pregnancy. Interventions A hybrid closed-loop system compared to standard insulin delivery (via insulin pump or multiple daily injections) with continuous glucose monitoring. Outcome measures The primary outcome is the difference between the intervention and control groups in percentage time spent in the pregnancy glucose target range (3.5–7.8 mmol/l) as measured by continuous glucose monitoring from 16 weeks’ gestation until delivery. Secondary outcomes include overnight time in range, time above range (> 7.8 mmol/l), glycated haemoglobin A1c, safety outcomes (diabetic ketoacidosis, severe hypoglycaemia, adverse device events), psychosocial functioning obstetric and neonatal outcomes. Results The percentage of time that maternal glucose levels were within target range was higher with closed-loop than standard insulin therapy: 68.2 ± 10.5 in closed-loop and 55.6 ± 12.5 in the control group (mean‑adjusted difference 10.5 percentage points, 95% confidence interval 7.0 to 14.0; p < 0.001). Results were consistent in secondary outcomes, with less time above range (−10.2%, 95% confidence interval −13.8 to −6.6%; p < 0.001), higher overnight time in range (12.3%, 95% confidence interval 8.3 to 16.2%; p < 0.001) and lower glycated haemoglobin A1c (−0.31%, 95% confidence interval −0.50 to −0.12%; p < 0.002) all favouring closed-loop. The treatment effect was apparent from early pregnancy and consistent across clinical sites, maternal glycated haemoglobin A1c categories and previous insulin regimen. Maternal glucose improvements were achieved with 3.7 kg less gestational weight gain and without additional hypoglycaemia or total daily insulin dose. There were no unanticipated safety problems (six vs. five severe hypoglycaemia cases, one diabetic ketoacidosis per group) and seven device-related adverse events associated with closed-loop. There were no between-group differences in patient-reported outcomes. There was one shoulder dystocia in the closed-loop group and four serious birth injuries, including one neonatal death in the standard care group. Limitations Our results cannot be extrapolated to closed-loop systems with higher glucose targets, and our sample size did not provide definitive data on maternal and neonatal outcomes. Conclusions Hybrid closed-loop therapy significantly improved maternal glycaemia during type 1 diabetes pregnancy. Our results support National Institute for Health and Care Excellence guideline recommendations that hybrid closed-loop therapy should be offered to all pregnant women with type 1 diabetes. Future work Future trials should examine the effectiveness of hybrid closed-loop started before pregnancy, or as soon as possible after pregnancy confirmation

    Lenalidomide maintenance versus observation for patients with newly diagnosed multiple myeloma (Myeloma XI): a multicentre, open-label, randomised, phase 3 trial.

    Get PDF
    BACKGROUND: Patients with multiple myeloma treated with lenalidomide maintenance therapy have improved progression-free survival, primarily following autologous stem-cell transplantation. A beneficial effect of lenalidomide maintenance therapy on overall survival in this setting has been inconsistent between individual studies. Minimal data are available on the effect of maintenance lenalidomide in more aggressive disease states, such as patients with cytogenetic high-risk disease or patients ineligible for transplantation. We aimed to assess lenalidomide maintenance versus observation in patients with newly diagnosed multiple myeloma, including cytogenetic risk and transplantation status subgroup analyses. METHODS: The Myeloma XI trial was an open-label, randomised, phase 3, adaptive design trial with three randomisation stages done at 110 National Health Service hospitals in England, Wales, and Scotland. There were three potential randomisations in the study: induction treatment (allocation by transplantation eligibility status); intensification treatment (allocation by response to induction therapy); and maintenance treatment. Here, we report the results of the randomisation to maintenance treatment. Eligible patients for maintenance randomisation were aged 18 years or older and had symptomatic or non-secretory multiple myeloma, had completed their assigned induction therapy as per protocol and had achieved at least a minimal response to protocol treatment, including lenalidomide. Patients were randomly assigned (1:1 from Jan 13, 2011, to Jun 27, 2013, and 2:1 from Jun 28, 2013, to Aug 11, 2017) to lenalidomide maintenance (10 mg orally on days 1-21 of a 28-day cycle) or observation, and stratified by allocated induction and intensification treatment, and centre. The co-primary endpoints were progression-free survival and overall survival, analysed by intention to treat. Safety analysis was per protocol. This study is registered with the ISRCTN registry, number ISRCTN49407852, and clinicaltrialsregister.eu, number 2009-010956-93, and has completed recruitment. FINDINGS: Between Jan 13, 2011, and Aug 11, 2017, 1917 patients were accrued to the maintenance treatment randomisation of the trial. 1137 patients were assigned to lenalidomide maintenance and 834 patients to observation. After a median follow-up of 31 months (IQR 18-50), median progression-free survival was 39 months (95% CI 36-42) with lenalidomide and 20 months (18-22) with observation (hazard ratio [HR] 0·46 [95% CI 0·41-0·53]; p<0·0001), and 3-year overall survival was 78·6% (95% Cl 75·6-81·6) in the lenalidomide group and 75·8% (72·4-79·2) in the observation group (HR 0·87 [95% CI 0·73-1·05]; p=0·15). Progression-free survival was improved with lenalidomide compared with observation across all prespecified subgroups. On prespecified subgroup analyses by transplantation status, 3-year overall survival in transplantation-eligible patients was 87·5% (95% Cl 84·3-90·7) in the lenalidomide group and 80·2% (76·0-84·4) in the observation group (HR 0·69 [95% CI 0·52-0·93]; p=0·014), and in transplantation-ineligible patients it was 66·8% (61·6-72·1) in the lenalidomide group and 69·8% (64·4-75·2) in the observation group (1·02 [0·80-1·29]; p=0·88). By cytogenetic risk group, in standard-risk patients, 3-year overall survival was 86·4% (95% CI 80·0-90·9) in the lenalidomide group compared with 81·3% (74·2-86·7) in the observation group, and in high-risk patients, it was 74.9% (65·8-81·9) in the lenalidomide group compared with 63·7% (52·8-72·7) in the observation group; and in ultra-high-risk patients it was 62·9% (46·0-75·8) compared with 43·5% (22·2-63·1). Since these subgroup analyses results were not powered they should be interpreted with caution. The most common grade 3 or 4 adverse events for patients taking lenalidomide were haematological, including neutropenia (362 [33%] patients), thrombocytopenia (72 [7%] patients), and anaemia (42 [4%] patients). Serious adverse events were reported in 494 (45%) of 1097 patients receiving lenalidomide compared with 150 (17%) of 874 patients on observation. The most common serious adverse events were infections in both the lenalidomide group and the observation group. 460 deaths occurred during maintenance treatment, 234 (21%) in the lenalidomide group and 226 (27%) in the observation group, and no deaths in the lenalidomide group were deemed treatment related. INTERPRETATION: Maintenance therapy with lenalidomide significantly improved progression-free survival in patients with newly diagnosed multiple myeloma compared with observation, but did not improve overall survival in the intention-to-treat analysis of the whole trial population. The manageable safety profile of this drug and the encouraging results in subgroup analyses of patients across all cytogenetic risk groups support further investigation of maintenance lenalidomide in this setting. FUNDING:Cancer Research UK, Celgene, Amgen, Merck, and Myeloma UK

    Rollout of closed-loop technology to pregnant women with type 1 diabetes: healthcare professionals’ views about potential challenges and solutions

    Get PDF
    Aims: To explore healthcare professionals’ views about the training and support needed to rollout closed-loop technology to pregnant women with type 1 diabetes. Methods: We interviewed (n=19) healthcare professionals who supported pregnant women using CamAPS FX closed-loop during the AiDAPT trial. Data were analysed descriptively. An online workshop involving (n=15) trial team members was used to inform recommendations. Results: Interviewees expressed enthusiasm for a national rollout of closed-loop, but anticipated various challenges, some specific to use during pregnancy. These included variations in insulin pump and continuous glucose monitoring expertise and difficulties embedding and retaining key skills, due to the relatively small numbers of pregnant women using closed-loop. Inexperienced staff also highlighted difficulties interpreting data downloads. To support rollout, interviewees recommended providing expert initial advice training, delivered by device manufacturers together with online training resources and specific checklists for different systems. They also highlighted a need for 24-hour technical support, especially when supporting technology naïve women after first transitioning onto closed-loop in early pregnancy. They further recommended providing case-based meetings and mentorship for inexperienced colleagues, including support interpreting data downloads. Interviewees were optimistic that if healthcare professionals received training and support, their longer-term workloads could be reduced because closed-loop lessened women’s need for glycaemic management input, especially in later pregnancy. Conclusions: Interviewees identified challenges and opportunities to rolling-out closed-loop and provided practical suggestions to upskill inexperienced staff supporting pregnant women using closed-loop. A key priority will be to determine how best to develop mentorship services to support inexperienced staff delivering closed-loop

    Automated insulin delivery in women with pregnancy complicated by type 1 diabetes

    Get PDF
    BACKGROUND: Hybrid closed-loop insulin therapy has shown promise for management of type 1 diabetes during pregnancy; however, its efficacy is unclear. METHODS: In this multicenter, controlled trial, we randomly assigned pregnant women with type 1 diabetes and a glycated hemoglobin level of at least 6.5% at nine sites in the United Kingdom to receive standard insulin therapy or hybrid closed-loop therapy, with both groups using continuous glucose monitoring. The primary outcome was the percentage of time in the pregnancy-specific target glucose range (63 to 140 mg per deciliter [3.5 to 7.8 mmol per liter]) as measured by continuous glucose monitoring from 16 weeks’ gestation until delivery. Analyses were performed according to the intention-to-treat principle. Key secondary outcomes were the percentage of time spent in a hyperglycemic state (glucose level >140 mg per deciliter), overnight time in the target range, the glycated hemoglobin level, and safety events. RESULTS: A total of 124 participants with a mean (±SD) age of 31.1±5.3 years and a mean baseline glycated hemoglobin level of 7.7±1.2% underwent randomization. The mean percentage of time that the maternal glucose level was in the target range was 68.2±10.5% in the closed-loop group and 55.6±12.5% in the standard-care group (mean adjusted difference, 10.5 percentage points; 95% confidence interval [CI], 7.0 to 14.0; P<0.001). Results for the secondary outcomes were consistent with those of the primary outcome; participants in the closed-loop group spent less time in a hyperglycemic state than those in the standard-care group (difference, −10.2 percentage points; 95% CI, −13.8 to −6.6); had more overnight time in the target range (difference, 12.3 percentage points; 95% CI, 8.3 to 16.2), and had lower glycated hemoglobin levels (difference, −0.31 percentage points; 95% CI, −0.50 to −0.12). Little time was spent in a hypoglycemic state. No unanticipated safety problems associated with the use of closed-loop therapy during pregnancy occurred (6 instances of severe hypoglycemia, vs. 5 in the standard-care group; 1 instance of diabetic ketoacidosis in each group; and 12 device-related adverse events in the closed-loop group, 7 related to closed-loop therapy). CONCLUSIONS: Hybrid closed-loop therapy significantly improved maternal glycemic control during pregnancy complicated by type 1 diabetes. (Funded by the Efficacy and Mechanism Evaluation Program; AiDAPT ISRCTN Registry number, ISRCTN56898625. opens in new tab.

    AiDAPT: automated insulin delivery amongst pregnant women with type 1 diabetes: a multicentre randomized controlled trial - study protocol.

    Get PDF
    BACKGROUND: Pregnant women with type 1 diabetes strive for tight glucose targets (3.5-7.8 mmol/L) to minimise the risks of obstetric and neonatal complications. Despite using diabetes technologies including continuous glucose monitoring (CGM), insulin pumps and contemporary insulin analogues, most women struggle to achieve and maintain the recommended pregnancy glucose targets. This study aims to evaluate whether the use of automated closed-loop insulin delivery improves antenatal glucose levels in pregnant women with type 1 diabetes. METHODS/DESIGN: A multicentre, open label, randomized, controlled trial of pregnant women with type 1 diabetes and a HbA1c of ≥48 mmol/mol (6.5%) at pregnancy confirmation and ≤ 86 mmol/mol (10%) at randomization. Participants who provide written informed consent before 13 weeks 6 days gestation will be entered into a run-in phase to collect 96 h (24 h overnight) of CGM glucose values. Eligible participants will be randomized on a 1:1 basis to CGM (Dexcom G6) with usual insulin delivery (control) or closed-loop (intervention). The closed-loop system includes a model predictive control algorithm (CamAPS FX application), hosted on an android smartphone that communicates wirelessly with the insulin pump (Dana Diabecare RS) and CGM transmitter. Research visits and device training will be provided virtually or face-to-face in conjunction with 4-weekly antenatal clinic visits where possible. Randomization will stratify for clinic site. One hundred twenty-four participants will be recruited. This takes into account 10% attrition and 10% who experience miscarriage or pregnancy loss. Analyses will be performed according to intention to treat. The primary analysis will evaluate the change in the time spent in the target glucose range (3.5-7.8 mmol/l) between the intervention and control group from 16 weeks gestation until delivery. Secondary outcomes include overnight time in target, time above target (> 7.8 mmol/l), standard CGM metrics, HbA1c and psychosocial functioning and health economic measures. Safety outcomes include the number and severity of ketoacidosis, severe hypoglycaemia and adverse device events. DISCUSSION: This will be the largest randomized controlled trial to evaluate the impact of closed-loop insulin delivery during type 1 diabetes pregnancy. TRIAL REGISTRATION: ISRCTN 56898625 Registration Date: 10 April, 2018

    Report on the Marine Imaging Workshop 2022

    No full text
    Imaging is increasingly used to capture information on the marine environment thanks to the improvements in imaging equipment, devices for carrying cameras and data storage in recent years. In that context, biologists, geologists, computer specialists and end-users must gather to discuss the methods and procedures for optimising the quality and quantity of data collected from images. The 4th Marine Imaging Workshop was organised from 3-6 October 2022 in Brest (France) in a hybrid mode. More than a hundred participants were welcomed in person and about 80 people attended the online sessions. The workshop was organised in a single plenary session of presentations followed by discussion sessions. These were based on dynamic polls and open questions that allowed recording of the imaging community’s current and future ideas. In addition, a whole day was dedicated to practical sessions on image analysis, data standardisation and communication tools. The format of this edition allowed the participation of a wider community, including lower-income countries, early career scientists, all working on laboratory, benthic and pelagic imaging.This article summarises the topics addressed during the workshop, particularly the outcomes of the discussion sessions for future reference and to make the workshop results available to the open public

    Report on the Marine Imaging Workshop 2022

    No full text
    Imaging is increasingly used to capture information on the marine environment thanks to the improvements in imaging equipment, devices for carrying cameras and data storage in recent years. In that context, biologists, geologists, computer specialists and end-users must gather to discuss the methods and procedures for optimising the quality and quantity of data collected from images. The 4 th Marine Imaging Workshop was organised from 3-6 October 2022 in Brest (France) in a hybrid mode. More than a hundred participants were welcomed in person and about 80 people attended the online sessions. The workshop was organised in a single plenary session of presentations followed by discussion sessions. These were based on dynamic polls and open questions that allowed recording of the imaging community’s current and future ideas. In addition, a whole day was dedicated to practical sessions on image analysis, data standardisation and communication tools. The format of this edition allowed the participation of a wider community, including lower-income countries, early career scientists, all working on laboratory, benthic and pelagic imaging. This article summarises the topics addressed during the workshop, particularly the outcomes of the discussion sessions for future reference and to make the workshop results available to the open public
    corecore