32 research outputs found

    Modeling the photocatalytic mineralization in water of commercial formulation of estrogens 17-β estradiol (E2) and nomegestrol acetate in contraceptive pills in a solar powered compound parabolic collector

    Get PDF
    Endocrine disruptors in water are contaminants of emerging concern due to the potential risks they pose to the environment and to the aquatic ecosystems. In this study, a solar photocatalytic treatment process in a pilot-scale compound parabolic collector (CPC) was used to remove commercial estradiol formulations (17-β estradiol and nomegestrol acetate) from water. Photolysis alone degraded up to 50% of estradiol and removed 11% of the total organic carbon (TOC). In contrast, solar photocatalysis degraded up to 57% of estrogens and the TOC removal was 31%, with 0.6 g/L of catalyst load (TiO2 Aeroxide P-25) and 213.6 ppm of TOC as initial concentration of the commercial estradiols formulation. The adsorption of estrogens over the catalyst was insignificant and was modeled by the Langmuir isotherm. The TOC removal via photocatalysis in the photoreactor was modeled considering the reactor fluid-dynamics, the radiation field, the estrogens mass balance, and a modified Langmuir-Hinshelwood rate law, that was expressed in terms of the rate of photon adsorption. The optimum removal of the estrogens and TOC was achieved at a catalyst concentration of 0.4 g/L in 29 mm diameter tubular CPC reactors which approached the optimum catalyst concentration and optical thickness determined from the modeling of the absorption of solar radiation in the CPC, by the six-flux absorption-scattering model (SFM)

    Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination: A Novel Solar Rotary Photoreactor

    Get PDF
    During the gold extraction in opencast mining, many hazardous substances, such as cyanide, are spilled into the water bodies. This study’s aim was to develop a novel rotary photocatalytic TiO2-based reactor to remove cyanide from polluted water using a rotary concentrator photoreactor (RCPR). This pilot-scale reactor was tested with synthetic cyanide water at concentrations from 0.05 to 50 ppm, varying the pH and commercial TiO2 load. The optimal conditions from experimental data were 87.4% of cyanide removal and catalyst load of 0.30 g/L at pH 9.5. Further, samples of cyanide water from an opencast gold mine were treated, achieving removal of 68.7% after 240 min. Our value-added is the rotary motion of the set of four glass tubes, achieving satisfactory performance, which is promising for cyanide wastewater treatment with a more compact footprint than a standard compound parabolic collector (CPC) solar photoreactor. Thus, it was possible to reduce mass and heat transfer limitations with a simple design by considering this photoreactor as a photocatalytic process intensifier. Copyright © 2022 by ASME

    Near-Infrared and Star-forming properties of Local Luminous Infrared Galaxies

    Get PDF
    We use HST NICMOS continuum and Pa-alpha observations to study the near-infrared and star-formation properties of a representative sample of 30 local (d ~ 35-75Mpc) luminous infrared galaxies (LIRGs, infrared 8-1000um luminosities of L_IR=11-11.9[Lsun]). The data provide spatial resolutions of 25-50pc and cover the central ~3.3-7.1kpc regions of these galaxies. About half of the LIRGs show compact (~1-2kpc) Pa-alpha emission with a high surface brightness in the form of nuclear emission, rings, and mini-spirals. The rest of the sample show Pa-alpha emission along the disk and the spiral arms extending over scales of 3-7kpc and larger. About half of the sample contains HII regions with H-alpha luminosities significantly higher than those observed in normal galaxies. There is a linear empirical relationship between the mid-IR 24um and hydrogen recombination (extinction-corrected Pa-alpha) luminosity for these LIRGs, and the HII regions in the central part of M51. This relation holds over more than four decades in luminosity suggesting that the mid-IR emission is a good tracer of the star formation rate (SFR). Analogous to the widely used relation between the SFR and total IR luminosity of Kennicutt (1998), we derive an empirical calibration of the SFR in terms of the monochromatic 24um luminosity that can be used for luminous, dusty galaxies.Comment: Accepted for publication in ApJ. Contact first author for high qualitity version of figure

    The discovery of the most UV-Lya luminous star-forming galaxy: a young, dust- and metal-poor starburst with QSO-like luminosities

    Full text link
    We report the discovery of BOSS-EUVLG1 at z=2.469, by far the most luminous, almost un-obscured star-forming galaxy known at any redshift. First classified as a QSO within the Baryon Oscillation Spectroscopic Survey, follow-up observations with the Gran Telescopio Canarias reveal that its large luminosity, MUV = -24.40 and log(L_Lya/erg s-1) = 44.0, is due to an intense burst of star-formation, and not to an AGN or gravitational lensing. BOSS-EUVLG1 is a compact (reff = 1.2 kpc), young (4-5 Myr) starburst with a stellar mass log(M*/Msun) = 10.0 +/- 0.1 and a prodigious star formation rate of ~1000 Msun yr-1. However, it is metal- and dust-poor (12+log(O/H) = 8.13 +/- 0.19, E(B-V) = 0.07, log(LIR/LUV) < -1.2), indicating that we are witnessing the very early phase of an intense starburst that has had no time to enrich the ISM. BOSS-EUVLG1 might represent a short-lived (<100 Myrs), yet important phase of star-forming galaxies at high redshift that has been missed in previous surveys. Within a galaxy evolutionary scheme, BOSS-EUVLG1 could likely represent the very initial phases in the evolution of massive quiescent galaxies, even before the dusty star-forming phase.Comment: 6 pages, 3 figures, 1 table. Accepted for publication in MNRAS Letter

    ALMA resolves the torus of NGC 1068: continuum and molecular line emission

    Get PDF
    We have used the Atacama Large Millimeter Array (ALMA) to map the emission of the CO(6-5) molecular line and the 432 {\mu}m continuum emission from the 300 pc-sized circumnuclear disk (CND) of the nearby Seyfert 2 galaxy NGC 1068 with a spatial resolution of ~4 pc. These observations spatially resolve the CND and, for the first time, image the dust emission, the molecular gas distribution, and the kinematics from a 7-10 pc-diameter disk that represents the submillimeter counterpart of the putative torus of NGC 1068. We fitted the nuclear spectral energy distribution of the torus using ALMA and near and mid-infrared (NIR/MIR) data with CLUMPY models. The mass and radius of the best-fit solution for the torus are both consistent with the values derived from the ALMA data alone: Mgas_torus=(1+-0.3)x10^5 Msun and Rtorus=3.5+-0.5 pc. The dynamics of the molecular gas in the torus show non-circular motions and enhanced turbulence superposed on the rotating pattern of the disk. The kinematic major axis of the CO torus is tilted relative to its morphological major axis. By contrast with the nearly edge-on orientation of the H2O megamaser disk, we have found evidence suggesting that the molecular torus is less inclined (i=34deg-66deg) at larger radii. The lopsided morphology and complex kinematics of the torus could be the signature of the Papaloizou-Pringle instability, long predicted to likely drive the dynamical evolution of active galactic nuclei (AGN) tori.Comment: Final version accepted by the Astrophysical Journal Letters (ApJLetters) on April 27th 2016, 6 pages, 5 figure

    Physical Conditions in the Seyfert Galaxy NGC 2992

    Get PDF
    This paper presents long slit spectral maps of the bi-cone shaped extended narrow line region (ENLR) in the Seyfert galaxy NGC 2992. We investigate the physical properties of the ENLR via emission line diagnostics, and compare the observations to shock and photoionization models for the excitation mechanism of the gas. The line ratios vary as a function of position in the ENLR, and the loci of the observed points on line ratio diagrams are shown to be most consistent with shock+precursor model grids. We consider the energetics of a nuclear ionizing source for the ENLR, and perform the q-test in which the rate of ionizing photons from the nucleus is inferred from measurements of the density and ionization parameter. The q-test is shown to be invalid in the case of NGC 2992 because of the limitations of the [S II]6717/6731 density diagnostic. The excitation of the gas is shown to be broadly consistent with the kinematics, with higher [N II]6583/H-alpha present in the more dynamically active region. We also show that the pressure associated with the X-ray emitting plasma may provide a large fraction of the pressure required to power the ENLR via shocks.Comment: 55 pages, 49 figures, ApJ accepted September 9, 1998. Figures 1a-f are provided in jpeg forma

    Life beyond 30: Probing the-20 < M (UV) <-17 Luminosity Function at 8 < z < 13 with the NIRCam Parallel Field of the MIRI Deep Survey

    Get PDF
    We present the ultraviolet luminosity function and an estimate of the cosmic star formation rate density at 8 8 galaxy candidates based on their dropout nature in the F115W and/or F150W filters, a high probability for their photometric redshifts, estimated with three different codes, being at z > 8, good fits based on χ 2 calculations, and predominant solutions compared to z < 8 alternatives. We find mild evolution in the luminosity function from z ∼ 13 to z ∼ 8, i.e., only a small increase in the average number density of ∼0.2 dex, while the faint-end slope and absolute magnitude of the knee remain approximately constant, with values α = − 2.2 ± 0.1, and M * = − 20.8 ± 0.2 mag. Comparing our results with the predictions of state-of-the-art galaxy evolution models, we find two main results: (1) a slower increase with time in the cosmic star formation rate density compared to a steeper rise predicted by models; (2) nearly a factor of 10 higher star formation activity concentrated in scales around 2 kpc in galaxies with stellar masses ∼108 M ⊙ during the first 350 Myr of the universe, z ∼ 12, with models matching better the luminosity density observational estimations ∼150 Myr later, by z ∼ 9

    Modelado de un Reactor Solar Fotocatalítico Heterogéneo con TiO2 para el Tratamiento de Agua Residual Contaminada con Albendazol

    No full text
    Albendazole is an anthelmintic drug with antiangiogenic properties, which means that inhibits the development of new blood vessels. This causes a serious risk for the growth of fetus during pregnancy as a result. Heterogeneous photocatalysis has been proposed as an alternative for removal of this contaminant. In this study, a solar compound parabolic collector (CPC) photocatalytic reactor was modeled and simulated in order to describe the total organic carbon (TOC) degradation of commercial albendazole. The Six Flux Model approach (SFM) was used to estimate the Local Velocity Volumetric Rate of Photon Absorption (LVRPA) coupled with a Langmuir-Hinshelwood (L-H) kinetic model in order to describe the photocatalytic degradation of the TOC content of the contaminant and its photochemical oxidation products. The parameters of the L-H model were estimated from experimental data obtained with a catalyst loading of 0.6 g/l, initial pH of 5.0 and three different initial TOC concentrations of the commercial albendazole (159.95, 75.58 and 40 ppm). The rate constant (kT) and adsorption constant (K1), estimated from the parameter fitting, were 9.28×10-4 m1.5ppmW-0.5 s-1 and 3.02 × 10-2 ppm-1, respectively. The model was validated with experimental results, achieving a TOC removal of 40% with the lowest concentration of the contaminant. By simulating the process with different catalyst loadings, the maximum TOC removal was achieved with 0.21 g/L of TiO2.El albendazol es un medicamento anthelmíntico con propiedades antiangiogénicas, lo que significa que inhibe el desarrollo de nuevos vasos sanguíneos. Esto implica un riesgo serio para el crecimiento del feto durante el embarazo. La fotocatálisis heterogénea se ha propuesto como alternativa para eliminar este contaminante emergente. En este estudio, un reactor fotocatalítico solar de collector parabólico compuesto (CPC) se modeló y simuló para describir la degradación del carbono orgánico total (TOC) del albendazol comercial. &nbsp;El enfoque del modelo de seis flujos (SFM) se empleó para&nbsp; calcular la velocidad local volumétrica de absorción de fotones (LVRPA) y se acopló con el modelo cinético de Langmuir-Hinshelwood (L-H) para describir la degradación fotocatalítica del contenido de TOC de el contaminante y los productos de su oxidación. Los parámetros del modelo L-H se estimaron a partir de datos experimentales obtenidos con una carga de catalizador de 0.6 g/l, un pH &nbsp;inicial de 5.0 y tres diferentes concentraciones iniciales de TOC del albendazol comercial (159.95, 75.58 y 40 ppm). La constante cinética (kT) y la constant de adsorción (K1), calculadas a partir del ajuste de parámetros fueron 9.28×10-4 m1.5ppmW-0.5 s-1 y 3.02 × 10-2 ppm-1, respectivamente. El modelo se validó con resultados experimentales, alcanzando una reducción de TOC del 40% con la concentración más baja del contaminante. Simulando el proceso con diferentes cargas de catalizador, la máxima reducción de TOC se obtuvo con 0.21 g/L de TiO2

    Preparation of Oxidized and Grafted Chitosan Superabsorbents for Urea Delivery

    No full text
    Different hydrogels based on chitosan were prepared by two environmentally friendly approaches: (i) oxidation under mild conditions and (ii) grafting of itaconic acid. Both procedures guide to it success modification leading hydrogels with adequate crosslinked degree. The hydrogels were structurally and chemically characterized and their swelling behavior was evaluated in water, NaCl and buffer solutions at different pHs. In all the cases, the increase of ionic strength decreases the equilibrium swelling. It was also demonstrated a superior swelling percentage at acidic pH. This percentage of swelling is significantly higher in grafted films than in the oxidized chitosans. Besides, the ability as fertilizers and water controlled-release superabsorbent hydrogels was evaluated. Consequently, the absorption and delivery of urea fertilizer was investigated as a function of initial concentration of urea in the media and the pH. These materials can be used in the agriculture as controlled fertilizer delivery as well as water regulators. Graphical Abstract: Hydrogels based-chitosan were prepared by non-environmentally aggressive approaches. Chitosan was modified by mild oxidation and grafting reaction with itaconic acid. The hydrogels present adequate crosslinked degree and worthy swelling behavior. Hydrogels were evaluated as superabsorbent for urea and water controlled- release.Authors want to acknowledge CONDES-LUZ for the financial support with the project VAC-CONDES-CC-0130-12.Peer Reviewe
    corecore