83 research outputs found

    Ligand Regulated Site Specific Recombination in Mammalian Cells

    Get PDF
    Chapter 1 of this thesis summarizes the current knowledge about the nuclear receptor superfamily of transcription factors. Chapter 2 describes the materials and methods used to carry out the research presented in the next 4 chapters. In chapter 3, I demonstrate that the FLP site specific DNA recombinase can be regulated by steroid ligands. The kinetics of recombination mediated by FLP-steroid receptor ligand binding domain fusion proteins (FLP-LBD) are described in this chapter and the parameters affecting these kinetics are discussed. In chapter 4 the effect of synthetic steroid ligands on the kinetics of FLP-LBD mediated recombination are explored using a combination of site directed mutagenesis and dose response experiments. In chapter 5, the generation of EBDs with altered ligand specificities by amino acid changes at 2 positions in the EBD is described. Finally, in chapter 6, the capacity of a number of nuclear receptor superfamily members to conditionally repress FLP is analysed

    Twenty-First Century Glucocorticoid Receptor Molecular Biology

    Get PDF
    Glucocorticoids are central to homeostasis as a function of the circadian cycle, temporally preceding circulating adrenaline concentration circadian fluctuations. Virtually, all cell types express the glucocorticoid receptor (GR). GR is a transcription factor that activates gene expression by binding to enhancers. Intriguingly, not all cell types respond to GR stimulation in the same fashion at the molecular level. This indicates that GR activity is subject to epigenetic control. We discuss the molecular basis for epigenetic control of GR action at the genomic level, including the concept of topologically associating domains which may restrain the roaming range of distal enhancers. Furthermore, much evidence indicates that GR can repress gene expression programs. We therefore discuss current concepts of the molecular basis of GR-mediated gene expression repression, including non-genomic mechanisms that involve mRNA destabilization

    Synthetic Point Mutagenesis

    Get PDF
    Contains fulltext : 236050.pdf (Publisher’s version ) (Open Access

    Multiple Aspects of ATP-Dependent Nucleosome Translocation by RSC and Mi-2 Are Directed by the Underlying DNA Sequence

    Get PDF
    Contains fulltext : 129351.pdf (publisher's version ) (Open Access)Background Chromosome structure, DNA metabolic processes and cell type identity can all be affected by changing the positions of nucleosomes along chromosomal DNA, a reaction that is catalysed by SNF2-type ATP-driven chromatin remodelers. Recently it was suggested that in vivo, more than 50% of the nucleosome positions can be predicted simply by DNA sequence, especially within promoter regions. This seemingly contrasts with remodeler induced nucleosome mobility. The ability of remodeling enzymes to mobilise nucleosomes over short DNA distances is well documented. However, the nucleosome translocation processivity along DNA remains elusive. Furthermore, it is unknown what determines the initial direction of movement and how new nucleosome positions are adopted. Methodology/Principal Findings We have used AFM imaging and high resolution PAGE of mononucleosomes on 600 and 2500 bp DNA molecules to analyze ATP-dependent nucleosome repositioning by native and recombinant SNF2-type enzymes. We report that the underlying DNA sequence can control the initial direction of translocation, translocation distance, as well as the new positions adopted by nucleosomes upon enzymatic mobilization. Within a strong nucleosomal positioning sequence both recombinant Drosophila Mi-2 (CHD-type) and native RSC from yeast (SWI/SNF-type) repositioned the nucleosome at 10 bp intervals, which are intrinsic to the positioning sequence. Furthermore, RSC-catalyzed nucleosome translocation was noticeably more efficient when beyond the influence of this sequence. Interestingly, under limiting ATP conditions RSC preferred to position the nucleosome with 20 bp intervals within the positioning sequence, suggesting that native RSC preferentially translocates nucleosomes with 15 to 25 bp DNA steps. Conclusions/Significance Nucleosome repositioning thus appears to be influenced by both remodeler intrinsic and DNA sequence specific properties that interplay to define ATPase-catalyzed repositioning. Here we propose a successive three-step framework consisting of initiation, translocation and release steps to describe SNF2-type enzyme mediated nucleosome translocation along DNA. This conceptual framework helps resolve the apparent paradox between the high abundance of ATP-dependent remodelers per nucleus and the relative success of sequence-based predictions of nucleosome positioning in vivo

    Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity

    Get PDF
    Induction of trained immunity (innate immune memory) is mediated by activation of immune and metabolic pathways that result in epigenetic rewiring of cellular functional programs. Through network-level integration of transcriptomics and metabolomics data, we identify glycolysis, glutaminolysis, and the cholesterol synthesis pathway as indispensable for the induction of trained immunity by β-glucan in monocytes. Accumulation of fumarate, due to glutamine replenishment of the TCA cycle, integrates immune and metabolic circuits to induce monocyte epigenetic reprogramming by inhibiting KDM5 histone demethylases. Furthermore, fumarate itself induced an epigenetic program similar to β-glucan-induced trained immunity. In line with this, inhibition of glutaminolysis and cholesterol synthesis in mice reduced the induction of trained immunity by β-glucan. Identification of the metabolic pathways leading to induction of trained immunity contributes to our understanding of innate immune memory and opens new therapeutic avenues

    Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity

    Get PDF
    Induction of trained immunity (innate immune memory) is mediated by activation of immune and metabolic pathways that result in epigenetic rewiring of cellular functional programs. Through network-level integration of transcriptomics and metabolomics data, we identify glycolysis, glutaminolysis, and the cholesterol synthesis pathway as indispensable for the induction of trained immunity by ß-glucan in monocytes. Accumulation of fumarate, due to glutamine replenishment of the TCA cycle, integrates immune and metabolic circuits to induce monocyte epigenetic reprogramming by inhibiting KDM5 histone demethylases. Furthermore, fumarate itself induced an epigenetic program similar to ß-glucan-induced trained immunity. In line with this, inhibition of glutaminolysis and cholesterol synthesis in mice reduced the induction of trained immunity by ß-glucan. Identification of the metabolic pathways leading to induction of trained immunity contributes to our understanding of innate immune memory and opens new therapeutic avenues.Netherlands Organization for Scientific Research (NWO). B.N. is supported by an NHMRC (Australia) CJ Martin Early Career Fellowship. N.P.R. Netherlands Heart Foundation (2012T051). N.P.R. and M.G.N. received a H2020 grant (H2020-PHC-2015-667873-2) from the European Union (grant agreement 667837). Fundação para a Ciência e Tecnologia, FCT (IF/00735/2014 to A.C., IF/00021/2014 to R.S., RECI/BBB-BQB/0230/2012 to L.G.G., and SFRH/BPD/96176/2013 to C. Cunha). The NMR spectrometers are part of the National NMR Facility supported by FCT (RECI/BBB-BQB/0230/2012). The research leading to these results received funding from the Fundação para a Ciência e Tecnologia (FCT), cofunded by Programa Operacional Regional do Norte (ON.2—O Novo Norte); from the Quadro de Referência Estratégico Nacional (QREN) through the Fundo Europeu de Desenvolvimento Regional (FEDER) and from the Projeto Estratégico – LA 26 – 2013–2014 (PEst-C/SAU/LA0026/2013). NIH (DK43351 and DK097485) and Helmsley Trust. D.L.W. is supported, in part, by the NIH (GM53522, GM083016, GM119197, and C06RR0306551

    Genetic Identification of a Network of Factors that Functionally Interact with the Nucleosome Remodeling ATPase ISWI

    Get PDF
    Nucleosome remodeling and covalent modifications of histones play fundamental roles in chromatin structure and function. However, much remains to be learned about how the action of ATP-dependent chromatin remodeling factors and histone-modifying enzymes is coordinated to modulate chromatin organization and transcription. The evolutionarily conserved ATP-dependent chromatin-remodeling factor ISWI plays essential roles in chromosome organization, DNA replication, and transcription regulation. To gain insight into regulation and mechanism of action of ISWI, we conducted an unbiased genetic screen to identify factors with which it interacts in vivo. We found that ISWI interacts with a network of factors that escaped detection in previous biochemical analyses, including the Sin3A gene. The Sin3A protein and the histone deacetylase Rpd3 are part of a conserved histone deacetylase complex involved in transcriptional repression. ISWI and the Sin3A/Rpd3 complex co-localize at specific chromosome domains. Loss of ISWI activity causes a reduction in the binding of the Sin3A/Rpd3 complex to chromatin. Biochemical analysis showed that the ISWI physically interacts with the histone deacetylase activity of the Sin3A/Rpd3 complex. Consistent with these findings, the acetylation of histone H4 is altered when ISWI activity is perturbed in vivo. These findings suggest that ISWI associates with the Sin3A/Rpd3 complex to support its function in vivo

    Variation in the Glucose Transporter gene <i>SLC2A2 </i>is associated with glycaemic response to metformin

    Get PDF
    Metformin is the first-line antidiabetic drug with over 100 million users worldwide, yet its mechanism of action remains unclear1. Here the Metformin Genetics (MetGen) Consortium reports a three-stage genome-wide association study (GWAS), consisting of 13,123 participants of different ancestries. The C allele of rs8192675 in the intron of SLC2A2, which encodes the facilitated glucose transporter GLUT2, was associated with a 0.17% (P = 6.6 × 10−14) greater metformin-induced reduction in hemoglobin A1c (HbA1c) in 10,577 participants of European ancestry. rs8192675 was the top cis expression quantitative trait locus (cis-eQTL) for SLC2A2 in 1,226 human liver samples, suggesting a key role for hepatic GLUT2 in regulation of metformin action. Among obese individuals, C-allele homozygotes at rs8192675 had a 0.33% (3.6 mmol/mol) greater absolute HbA1c reduction than T-allele homozygotes. This was about half the effect seen with the addition of a DPP-4 inhibitor, and equated to a dose difference of 550 mg of metformin, suggesting rs8192675 as a potential biomarker for stratified medicine
    corecore