
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 2

Twenty-First Century Glucocorticoid Receptor
Molecular Biology

Cheng Wang, Roel Oldenkamp,
Ronald J.W. Oellers and Colin Logie

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72016

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Cheng Wang, Roel Oldenkamp, Ronald J.W. Oellers and 
Colin Logie

Additional information is available at the end of the chapter

Abstract

Glucocorticoids are central to homeostasis as a function of the circadian cycle, temporally 
preceding circulating adrenaline concentration circadian fluctuations. Virtually, all cell 
types express the glucocorticoid receptor (GR). GR is a transcription factor that activates 
gene expression by binding to enhancers. Intriguingly, not all cell types respond to GR 
stimulation in the same fashion at the molecular level. This indicates that GR activity is 
subject to epigenetic control. We discuss the molecular basis for epigenetic control of GR 
action at the genomic level, including the concept of topologically associating domains 
which may restrain the roaming range of distal enhancers. Furthermore, much evidence 
indicates that GR can repress gene expression programs. We therefore discuss current 
concepts of the molecular basis of GR-mediated gene expression repression, including 
non-genomic mechanisms that involve mRNA destabilization.

Keywords: glucocorticoid receptor, glucocorticoid response element, chromosome 
conformation, epigenetics, non-genomic action, RNA decay

1. Introduction

Glucocorticoids (GCs) are steroids derived from cholesterol that are mainly produced in 
the adrenal cortex, under the control of the hypothalamic–pituitary–adrenal axis. Due 
to their lipophilic nature, GCs can traverse cellular membranes and thus enter any cell. 
Physiologically, GCs show circadian oscillations in man, peaking at 06:00 before we wake 

up and then dropping until 00:00, when their levels start to rise again. Adrenaline, a cat-
echolamine that is produced by the adrenal medulla, follows this trend with a lag of about  

2 hours [1]. Ontogenetically, GC levels increase during the final weeks of human gestation and 
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in the post-natal period. This not only stimulates gluconeogenesis, but also perinatal lung 
maturation [2] and many other physiological processes [3–5]. Furthermore, GCs are part of an 
emotion (stress, fear, and arousal) processing pathway in the brain that impacts memory and 

aspects of behavior that are controlled by the central nervous system [6–8].

Importantly, from a medical point of view, GCs and their synthetic analogues have strong 
immunosuppressive properties. Because of this, synthetic GCs belong to the top 50 World 
Health Organization essential medicines. Prednisone, dexamethasone, and triamcinolone are 
used to treat a wide range of (auto)inflammatory conditions as well as hematopoietic malig-

nancies. The anti-inflammatory effect of GCs is due to regulation of cell survival and immune 
signaling molecules such as chemokines, interleukins, and cytokines such as TNFα [9, 10]. 
GCs are often well accepted as a long-term treatment, making them irreplaceable for medical 

use. Nevertheless, synthetic glucocorticoid (over)use has a number of side effects that usually 
involve homeostasis and tissue maintenance [11, 12]. To mitigate such side effects, a detailed 
understanding of the molecular mode of action of GCs is a necessity. Hence, understand-

ing the molecular mechanisms through which GCs exert their biological function has been a 

highly active research field in the past century.

The glucocorticoid receptor (NR3C1, abbreviated here as GR) is a sequence-specific DNA-
binding transcription factor that is expressed in virtually every human cell type. Hence, 

almost every tissue is potentially responsive to GCs through gene expression modulation. 
Since the molecular responses to GCs of given tissues are different, it is thought that epigen-

etic programming during cellular differentiation underlies the cell-specific GC responses [13]. 
Below, we will review recent developments in epigenetic research relevant to cell-specific GC 
response mechanisms. In the last section of this chapter, we will review recent research results 
that support the notion that non-genomic effects of GCs may be very important too.

2. Chromosome architecture and epigenetic control of glucocorticoid 

responses: DNA accessibility

Eukaryotic transcription factors (TFs) bind to regulatory DNA elements commonly called 
“ cis-acting elements” to modulate the transcription rates of their target genes. Cis-acting ele-

ments can be located at (i) gene promoters, where mRNA transcription starts, or (ii) at enhanc-

ers, which can be located hundreds of thousands of nucleotides away from their target gene 

promoters, or (iii) at boundary elements that flank chromosome domains and function to 
restrict enhancer activity within individual topologically associated chromosome domains [13].

In order to determine the locations where TFs bind on chromosomes, a technique called chro-

matin immunoprecipitation (ChIP) was developed in the 1990s. ChIP is based on formalde-

hyde crosslinking of TFs to DNA, followed by DNA co-immunoprecipitations using antibodies 
directed against the TF protein [14]. Initially, PCR was used to analyze the co-immunoprecipitated 
DNA, using the enrichment of putative TF target sites relative to “control” chromosomal regions. 
Nowadays, the co-immunoprecipitated DNA fragments are prepared as DNA libraries that can 
be sequenced on next-generation sequencing (NGS) platforms, followed by computational map-

ping of the obtained reads to a reference genome [15].
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Currently, more than 20 human and mouse genome-wide GR occupation profiles are avail-
able. These reveal a high degree of GR-binding variability [16]. Grøntved et al. showed that a 
majority (83%) of GR-DNA binding sites in mouse liver cells are liver cell-specific, while only 
0.5% of events are shared between all analyzed cell-types [17]. This suggests that there is a 
complex and dynamic epigenetic component to GR binding that underlies the differences in 
GR-mediated transcriptional regulation across cell types.

The first level of epigenetic regulation is rather well defined by DNA being wrapped, or not, 
around histones to form nucleosomes every ~190 bp [18, 19]. Low nucleosome occupancy 
can be measured as DNaseI hypersensitivity, because accessible free DNA is more prone to 
DNaseI endonuclease cleavage than DNA wrapped around nucleosomes [20, 21].

DNA accessibility is an important indicator for GR binding. Early studies indicated that GR 
binding increases DNA accessibility to DNaseI [22, 23] and it was therefore concluded that 

GR “opens up” chromatin. Although this is true, more recent research indicates that the a 
majority of chromosomal GR-binding sites coincide with pre-existing hypersensitive DNA 
stretches, whose DNaseI accessibility profile is further modulated by GR activity, as first 
reported on a genome-wide level by John et al. [24–27] (Figure 1). Grøntved et al. indicated 
that 62% of glucocorticoid receptor-binding sites are occupied by the transcription factor  

C/EBP in mouse liver tissue and that C/EBP maintains chromatin accessibility before GC treat-
ment [17]. Furthermore, it was shown that in HeLa cells, 88% of GR-binding sites are already 
occupied by the lysine acetyltransferase p300 transcription co-activator prior to GC treatment 

Figure 1. GR binds to GREs at several DNaseI hypersensitive locations within the TSC22D3/GILZ locus on human 

chromosome X. This can increase p300 histone acetyltransferase occupancy, H3K27ac marking, and DNaseI 
hypersensitivity. Notably, occupancy by RNA polymerase II is dramatically increased upon 4 hours of GC treatment, 
indicating transcription activation. Histone H3 lysine modifications are indicated (H3K27 acetylation, H3K4 mono-

methylation, H3K4 tri-methylation). Data are from HeLa cells, Rao et al. [27].
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[27, 28]. Altogether, the available evidence indicates that GR-mediated transcriptional control 
is dependent on other TFs that establish baseline chromatin accessibility profiles in a cell-type 
specific manner, as exemplified by FoxA1 [29]. However, one single pioneer TF is unlikely to 
be the sole key to differential use of GR response elements by different cell lineages, or by the 
same cell type under different conditions. Rather, combinations of DNA sequence-specific 
transcription factors may act together as “reciprocal pioneers” in an environmentally cued 
fashion [30–33].

In summary, in a given cell type, GR generally binds to a predetermined set of nucleosome 
free regions within enhancers that are marked by lineage determining TFs, and GR only rarely 
binds at sites with very low initial levels of DNA accessibility (Figure 1) [28, 34]. Intriguingly, 
GR appears to associate for rather short times with its cognate sites in vivo, with reported 
DNA residence times in the order of seconds [35–39]. GR binding usually results in increased 
histone acetylation [27] (Figure 1).

3. Chromosome architecture and epigenetic control of glucocorticoid 

responses: topologically associated domains

Over the last decade, a lot of effort was invested in mapping active cis-regulatory enhancer 

elements to susceptible promoters. This is especially relevant in GR-mediated transcriptional 
regulation, because the majority of GR-bound cis-acting DNA elements are enhancers that are 
located many kilobases away from the promoters of GR-responsive genes [17, 24]. An impor-

tant contributor in the identification of enhancer-promoter interactions was the development 
of nuclear proximity-based chromosome conformation capture (3C) technology in 2002 [40]. In 
brief, interacting DNA regions are fixed by formaldehyde through DNA-protein-DNA cross-

links. The crosslinked chromatin is then digested using restriction enzymes and the digested 
ends are ligated to obtain DNA circles that harbor sequences from interacting DNA regions. 
In the original 3C protocol, which is considered a “one-to-one” approach, interactions between 
two defined genomic loci are assessed by quantitative polymerase chain reaction (RT-qPCR) 
using locus-specific primers. Circularized Chromatin Conformation Capture (4C), is a “one-
to-all” approach that implements a second round of restriction and ligation to obtain small 

DNA circles which are suitable for inverse PCR amplification to identify the genome-wide 
DNA interactions of one defined viewpoint locus with any other chromosomal loci [41, 42]. 
The most recent technical development in 3C technologies is the establishment of chromosome 
capture followed by high-throughput sequencing (Hi-C) [43]. Crosslinked DNA is digested, 
labeled with biotin, and re-ligated resulting in a biotin-labeled 3C library. Ligated circles are 
sheared, purified, and subsequently analyzed using NGS. Hi-C is an “all-to-all” approach 
because it potentially identifies all possible genome-wide DNA interactions. Capture Hi-C 
is a further modified version of Hi-C that uses immobilized custom DNA probes and DNA 
hybridization to enrich for specific loci interactions present in a Hi-C library [44].

A fascinating feature of nuclear chromosome organization is its hierarchical character, con-

taining several layers of compartmentalization. Analyses of Hi-C contact matrices confirm the 
existence of a first level of organization, namely the occurrence of chromosome territories [45] 
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that were previously described in microscopy-based studies [46]. At the next level, individual 
chromosomes are partitioned into multi-megabase “A” and “B” compartments that have a pro-

pensity to cluster separately. “A” compartments tend to display a euchromatin profile, being 
gene-rich, transcriptionally active, and accessible. “B“ compartments are generally gene-poor 
with a tendency to be more heterochromatic, transcriptionally inactive, and less accessible. 
Hi-C maps with improved resolution, mainly obtained through increased sequencing depth 
and the use of different restriction enzymes, reveal the partitioning of A and B compartments 
into so-called sub-Mb-sized topologically associated domains (TADs) [47]. TADs are defined 
by their tendency to favor internal rather than external DNA interactions. Hence, the TAD 
hypothesis states that TADs are flanked by left and right boundaries and that enhancers mainly 
interact with promoters and enhancers within their TAD, but not outside of it. It is currently 
thought that TADs consist of dynamic sub-Mb chromatin fiber loops that undergo continuous 
remodeling, among others through RNA polymerase II passage.

TADs are highly conserved between different cell lineages [48], indicating that TADs may be 
universal functional chromosomal units that serve as a platform within which cis-regulatory 

elements are spatially brought together with their susceptible promoter element. The basis 
of TAD loops is highly enriched for CCCTCF-binding factor (CTCF) [47] (Figure 2). CTCF 

Figure 2. A model depicting long-range transactivation after glucocorticoid stimulation. (A) Linear overview of cis-acting 

element organization. Convergent CTCF motifs define TAD boundaries that restrict promoter-enhancer interactions. A 
schematic contact matrix of a virtual Hi-C experiment is shown as an interaction heatmap. (B) GR induces transcription 
through binding of a pre-configured locus without affecting its spatial chromosome architecture. Low and high levels 
of enhancer H3K27 acetylation are depicted by light and dark rectangles, respectively. TAD: topologically associating 
domain, GR: glucocorticoid receptor, and TSS: transcription start site. See also Ref. [13].
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is known as a transcriptional regulator that functionally segregates chromosomal TADs by 
inhibiting enhancer-promoter interactions [49]. Importantly, the majority of mammalian TAD 
loops are flanked by a pair of convergent CTCF motifs that mark the TAD’s left and right 
boundaries [50]. Deletion or inversion of CTCF sites can alter TAD architecture and there-

fore result in dysregulated enhancer-promoter interactions [51]. Moreover, CTCF depletion 
disrupts TAD boundaries [52] and impacts gene expression [53]. Dysregulation of CTCF is 
associated with improper gene regulation during development and oncogenesis [54, 55].

The cohesin complex co-localizes with CTCF when assayed by ChIP [56, 57]. Cohesin rings 
are composed of the core subunits SMC1, SMC3, RAD21, and STAG [58, 59]. Cohesin is most 
likely loaded onto its chromatid substrate by the NIPBL2/Mau2 cohesin-loading complex, 
which is enriched at transcription start sites (TSS) [60, 61]. Conversely, cohesin release from 
chromatids is facilitated by WAPL [62]. Depletion of cohesin leads to altered short-range chro-

matin interactions, while global TAD organization seemingly persists, suggesting that cohe-

sin and CTCF play different mechanistic roles in TAD formation [63]. Indeed, while inhibiting 
cohesin loading (by inhibiting cohesin loading factors) inhibits the formation of topologically 

associated domains, inhibiting cohesin release by inhibiting WAPL restricts loop extension 
[64]. In the absence of both CTCF and WAPL, cohesin accumulates in up to 70 kilobase-long 
regions at the 3′-ends of active genes, in particular, if these converge on each other [60, 61]. 
Cohesin can be moved along chromosomes through RNA polymerase II translocation along 
its template in yeast and human; this indicates evolutionary conservation of the translocation 
of Cohesin rings during RNA polymerase II passage.

A quantitative model of “chromatin loop extrusion” was proposed that explains the dynamic 
features of TADs rather well [50, 65, 66]. Very recently, looping was studied in the mono-

cytic leukemia cell line THP1 that can differentiate into macrophage-like cells. About 16,000 
chromatin loops were detected in both cell types and, using stringent selection criteria, 217 

were found to be “dynamic” [67]. This indicates that although loss and gain of TAD loops 
can occur naturally as cells adapt their gene expression landscape, it is not an obligate step in 

gene activation/repression. Indeed, Hi-C results obtained in parallel in eight primary human 
hematopoietic cell types show high correspondence [68].

In 2009, long-range interactions involving GR-bound cis-acting DNA sequences were identi-
fied in mouse cells using a modified 3C technique [70]. An interaction that spans 30 kb was 
detected between a GR-binding site in the Lcn2 gene and the promoter of the Ciz1 gene. 
This interaction may be responsible for GC-mediated Lcn2 and Ciz1 transcription induction 

in mouse mammary epithelial adenocarcinoma 3134 cells [69]. In 2011, the same research 
group reported that “the predominant hormone-induced changes for Lcn2-contacting loci can 

be attributed to an increased frequency of pre-existing interactions” [70]. More recently, the 
4C approach and genome-wide chromatin structure analysis were applied to characterize 
GR-associated DNA interactions [71]. In the 3134 murine cell line, this showed that activated 
GR response elements can interact with a downstream enhancer of the Tsc22d3 transcrip-

tion repressor gene, whose transcription is strongly upregulated by glucocorticoids. See also 
Figure 1 where human TSC22D3 is shown. However, upon glucocorticoid receptor activation, 
contact intensities changed two-fold at most [71].
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Theoretically, there are two types of models for transcription factor (TF)-mediated gene 
regulation at the level of chromatin organization and chromosome folding. In the first 
type, repressed loci reside in a silent and inaccessible chromatin state with a low enhancer- 

promoter interaction frequency. Binding of TFs to distal cis-regulatory elements would then 

enhance the accessibility of the locus for other TFs to bind the enhancers and promoters, 
and consequently, increased interaction between promoter and enhancer elements would 
alter gene expression [72, 73]. In the second type of models, the locus is dynamically pre-
configured in 3D through boundary-boundary interactions controlled by CTCF and cohesin 
dynamics that insure that TFs can rapidly exert stimulatory or repressive effects on transcrip-

tion [74] (Figure 2). In this model, TFs hardly affect enhancer-promoter interaction frequen-

cies, although they do affect the histone-borne epigenetic marks such as H3K27 acetylation 
(see Figure 1). Currently, available data suggest that GR-responsive loci fit the second type of 
models, since dexamethasone-mediated GR activation does not greatly alter TAD structure 
[70, 71] (Figure 2).

4. GR-binding site sequences and GR-mediated transrepression

The oligomerization state and quaternary structure of GR protein on DNA is thought to influ-

ence the activity of cis-acting GR-binding DNA elements. Experimentally determined gluco-

corticoid receptor DNA-binding sites have been broadly classified as “simple,” “composite” 
or “tethering.” In the “simple” case, homodimers of GR trans-activate genes by binding to 
canonical GR response elements (GREs) and consequently recruit transcription co-activators 
[75]. In the composite DNA motif case, repression and activation are both possible outcomes. 
Finally, “tethering” is a DNA-binding mode whereby GR does not directly bind specific 
DNA sequences; instead, it is indirectly tethered to DNA by another TF via protein-protein 
interactions. Tethering was historically proposed to be the main mechanism of GC-induced 
GR-mediated transcription repression.

Canonical GREs, mineralocorticoid, progesterone, and testosterone receptor-binding sites are 

virtually identical, being composed of two inverted pseudo-palindromic repeats separated 
by a spacer sequence of three bases (GRACANNNTGTYC) [76, 112]. Spacer sequence length 
has been proposed to be important to maintain GR’s dimerization state [77, 78]. Furthermore, 
it has been suggested that allosteric DNA plasticity in the GR recognition sequences influ-

ences the conformational state of GR and, thereby, its spatiotemporal regulatory character 

[79, 80]. However, Presman et al., shone new light on this paradigm as real-time imaging sug-

gests that GR tetramerizes at GREs [81]. Furthermore, in another key publication, Presman 
et al. used GR point mutations to confirm that trans-repression and transactivation by GR 
are two functions that can be separated genetically, whereby loss of transactivation potential 
though impaired homodimerization did not always co-occur with loss of trans-repression 
potential [82].

The application of single-base resolution TF ChIP technology, attained by inclusion of a 
lambda exonuclease digestion step in the ChIP protocol (ChIP-exo), was used to reveal that 
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many GR-bound half-sites (GRACA) coincide with recognition sequences of unrelated TFs 
at composite elements [83, 84]. For instance, Lim et al. revealed co-localization with liver-
specific TF-binding sites, explaining part of GR’s liver cell-specific binding profiles [84]. The 
molecular mode of regulation at composite sites still remains to be elucidated, although it 

was hypothesized to fit a model in which only the co-association of the involved TFs results 
in productive DNA binding, as seen for classical heterodimeric TFs [85, 86].

Next to its ability to bind half-sites, monomeric GR has been reported to counter the effects of 
other TFs through protein-protein tethering which would result in trans-repression [87, 88]. 
One such proposed GR-tethering partner is the activator protein 1 (AP-1) heterodimer made-
up of heterodimers of bZIP TF family members. A second major proposed GR tethering part-
ner is NF-κB, a TF that consists of heterodimers of RELA and RELB with NFKB1 and NFKB2 
subunits [89–92].

For long, AP-1 and NF-κB tethering of GR to DNA were considered the dominant mechanism 
for GR-mediated trans-repression of transcription, through “on-DNA” repression of the GR 
tethering TF’s transcription activation potential, as reviewed by Glass and Saijo [93]. Genomic 
studies showed a significant reduction of GR association upon AP-1 loss, but a majority of reg-

ulatory scenarios could neither be disentangled nor rationalized through genome-wide ChIP 
analyses [94]. Indeed, recent experiments indicate that the mode of GR “trans- repression” 
is still not fully understood. For instance, Oh et al., showed that activation of GR after LPS 
treatment caused similar gene repression as activation of GR before LPS treatment, and that 
DNA occupancy by GR was not predictive of gene expression repression, contradicting the 
“trans-repression by tethering” model. Rather, GR activation was found to directly induce the 
expression of inhibitors of NF-κB (and AP-1) and this was proposed to cause genome-wide 
blockade of NF-κB interaction with chromatin [95]. This suggests that protein tethering lead-

ing to DNA-bound monomeric GR trans-repression can only account for a minority of repres-

sive events [96]. Indeed, single-molecule imaging suggests that tethering can account for only 
~3% of DNA recruitment events [35].

In yet another twist of the GR tethering saga, Weikum et al. showed that GR associates with 
a GRE half-site that is located within an AP-1 recognition element, even in the absence of 
AP-1 [97]. Since AP-1 occupancy was not directly required for GR-mediated trans-repression, 
Weikum et al. proposed that AP-1 establishes an accessible chromatin state for subsequent GR 
binding to the half-sites which results in transcription repression [34]. Whether AP-1 trans-
repression by GCs relies on co-repressor recruitment [98, 92] or rather on exclusion of other 

TFs and their co-activators is an unresolved issue at this point in time.

5. Non-genomic mechanisms of gene regulation by glucocorticoids

The classical model for GR action involves ligand-dependent release from a repressive HSP90 
complex followed by genomic DNA binding and consequent transcription modulation [12, 

75, 99–101]. However, over the years, non-genomic physiologically relevant GR responses 
have been proposed, as reviewed by Boldizsar et al. [102]. These include direct membrane 
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binding effects of (synthetic) glucocorticoids, a putative non-GR membrane-associated recep-

tor [103], functional interactions of GR with proteins involved in signal transduction such as 
kinases and phosphatases [104, 105], and mitochondrial GR translocation as a mechanism 

leading to T-cell apoptosis [106]. An advantage of non-genomic regulation over genomic reg-

ulation of gene expression is that non-genomic regulation can take place much faster than 

the transcription-translation process, which often take >20 minutes to begin to change a cell’s 
molecular composition [107–109].

Over the past decades, it has become apparent that non-genomic mechanisms may also play 
vital roles in GC action, particularly in the context of immune cell regulation [108]. The mech-

anism we will review below concerns the apparent capacity of GR to bind to RNA.

There are reports that the growth arrest-specific 5 transcript (GAS5), which is a non-coding 
RNA, can sequester GR, as well as progesterone and androgen receptors, away from their 
genomic sites of action by acting as a “GRE decoy” [110–112]. This GAS5-dependent GC 
inhibitory pathway appears to also be active in some immune cells [113, 114]. Although there 
are no crystal structures of GR bound to RNA, such structures have been modeled [110].

On the other hand, evidence was published that GCs affect the turnover of specific mRNAs. 
Regulation of mRNA stability is an intricate process controlled by a complex set of interaction 
between phosphorylation-mediated signaling pathways like the phosphorylation of UPF1 or 
SMG-2, which together with cis-regulatory RNA elements accelerate an mRNA’s decay rate 
[107, 115–118]. RNA cis-acting elements that regulate mRNA stability are usually found in 
their 5′ and 3′ untranslated regions (UTRs) [119, 120]. The most widely found sequences in 
the 3′ UTRs of unstable mRNAs belong to the adenylate-uridylate-rich elements, consisting of 
AUUUA ribonucleotide sequences [119]. It has been proposed that GCs can accelerate mRNA 
decay by inducing the transcription of genes that code for protein factors implicated in mRNA 
decay. One such example being the gene that codes for tristetraprolin (TTP, also known as 

ZFP36), which is inducible by GCs under some circumstances [121, 122]. Pro-inflammatory 
factor mRNAs indeed display differential half-lives through such an indirect GC-induced 
mechanism, an example of which is TNFα [122, 123].

Strikingly, in addition to upregulating the expression of mRNA decay factors, it would 
appear that GR can act directly as a ligand-dependent activator of mRNA decay. In 1999, a 
5′ UTR RNA element was reported to be of particular importance for GC regulation of the 
expression of the MCP-1/CCL2 inflammatory chemokine [124]. In 2007, it was first reported 
that GR binds specifically to CCL2 mRNA, to cause its decay [125]. In 2011, an RNA immu-

noprecipitation protocol was employed to define an RNA motif that recruits GR and the 5′ 
UTRs of CCL2 and CCL7 mRNAs [126]. The mechanism of GR binding to an mRNA to medi-
ate its decay was termed “GR-mediated mRNA decay” (GMD) by Park et al. in 2015 [127]. 
This research group investigated how GMD occurs. They reported that GMD is a distinct 
mRNA decay pathway that shares factors with other forms of RNA decay [128, 129]. GMD 
depends on a number of proteins that have to be recruited to the mRNA. These include GR, 
PNRC2, UPF1, DCP1A, HRSP12, and YBX1 which then instigate rapid mRNA degradation 
(Figure 3). PNRC2 and UPF1 are known to bind to each other to bring RNA helicase activity 
into the complex. Another pair of factors that are known for their ability to degrade mRNA 
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are DCP1A, which promotes mRNA decapping by DCP1 activity, and HRSP12, an endoribo-

nuclease that can attack mRNA [129]. Although exciting, GMD still needs to be confirmed by 
unbiased approaches such as genome-wide transcriptomic comparisons of nascent RNA and 
steady-state RNA which have the capacity to simultaneously report mRNA transcription and 
decay rates [130].

6. Conclusion

Over the past decade, GR action has been studied at the molecular level in model systems 
using DNA accessibility assays, GR ChIP, epigenetic profiling of histone-borne epigenetic 
marks, transcriptome profiling, and RNA immunoprecipitation. Furthermore, chromosome 
conformation capture assays have been deployed to investigate the impact of GC signaling on 
chromosome domain topology.

In the cases where it was studied, GR was found to bind for less than a minute to its genomic 
targets. GR does not appear to affect the configuration of the topologically associated domains 
to which it binds. It therefore appears that GR binds to loci where enhancers and promoters 
are dynamically pre-configured in three-dimensional space. The observation that GR complies 
with chromosome conformation rather than influencing it offers the exciting perspective of 

Figure 3. Model of the assembly and composition of the glucocorticoid mediated mRNA decay pathway as described 
by Park et al. [129]. GR with bound GC recruits PNRC2 and DCP1A together with UPF1 to the 5′ UTR of a target 
mRNA to form Complex I. HRSP12 and YBX1 are then recruited to form Complex II and mRNA decay is performed by 
exonucleases.
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being able to map intergenic GRE’s, which are often located very far away from their target 
promoters, to TADs. The genes encompassed by these TADs can then be earmarked as poten-

tial GR target genes, a hypothesis that can be confirmed by monitoring their expression upon 
GC exposure.

Results obtained by many laboratories suggest that GR is dependent on other pioneer tran-

scription factors to access its response elements in chromosomal DNA. Co-pioneer factor 
combinations appear to be cell-type-specific lineage determining TFs, largely explaining the 
tissue-specific responses elicited by GCs. Furthermore, much evidence indicates that GR is 
not only restricted to the classical inverted repeat steroid response element, but can also bind 
to a variety of DNA sequences that only encompass one half site. Furthermore, the concept 
that GR is tethered indirectly to DNA via other TFs, whose activity it would then repress 
“on DNA,” is no longer the only model to explain trans-repression in the field. Indeed, other 
genomic and non-genomic interactions may explain the repression of NFKB and AP-1 target 
genes observed upon GC exposure.

Interestingly, GR itself appears to be subject to miRNA-mediated regulation, as recently 
reviewed [131].

Excitingly, following on early reports of RNA binding, it was reported multiple times that GR 
is also an mRNA-binding protein that induces mRNA decay. A particular target for this path-

way are CCL chemokine family mRNAs that have long been known to undergo a dramatic 
down-regulation upon GC exposure.

Altogether, we conclude that although much effort has been invested in glucocorticoid research 
since the discovery in the 1940s that glucocorticoids are anti-inflammatory wonder drugs, 
much remains to be discovered about the molecular mechanisms of action of glucocorticoids.

Abbreviations

3C Chromosome Conformation Capture

4C Circularized Chromatin Conformation Capture

ChIP Chromatin immunoprecipitation

DHS DNaseI hypersensitive site

GC glucocorticoid

GMD GR-mediated mRNA decay

GR Glucocorticoid receptor

GRE GR response elements

Hi-C Chromosome conformation capture with high-throughput sequencing

LPS Lipopolysaccharides
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NGS Next-generation sequencing

TAD Topologically associating domain

TF Transcription factor

TNFα Tumor necrosis factor

TSS Transcription start site

UTR mRNA untranslated region
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