234 research outputs found

    The role of the C8 proton of ATP in the regulation of phosphoryl transfer within kinases and synthetases.

    Get PDF
    The kinome comprises functionally diverse enzymes, with the current classification indicating very little about the extent of conserved regulatory mechanisms associated with phosphoryl transfer. The apparent Km of the kinases ranges from less than 0.4 μM to in excess of 1000 μM for ATP. It is not known how this diverse range of enzymes mechanistically achieves the regulation of catalysis via an affinity range for ATP varying by three-orders of magnitude. Results: We have demonstrated a previously undiscovered mechanism in kinase and synthetase enzymes where the overall rate of reaction is regulated via the C8-H of ATP. Using ATP deuterated at the C8 position (C8D-ATP) as a molecular probe it was shown that the C8-H plays a direct role in the regulation of the overall rate of reaction in a range of kinase and synthetase enzymes. Using comparative studies on the effect of the concentration of ATP and C8D-ATP on the activity of the enzymes we demonstrated that not only did C8D-ATP give a kinetic isotope effect (KIE) but the KIE's obtained are clearly not secondary KIE effects as the magnitude of the KIE in all cases was at least 2 fold and in most cases in excess of 7 fold. Conclusions:Kinase and synthetase enzymes utilise C8D-ATP in preference to non-deuterated ATP. The KIE obtained at low ATP concentrations is clearly a primary KIE demonstrating strong evidence that the bond to the isotopically substituted hydrogen is being broken. The effect of the ATP concentration profile on the KIE was used to develop a model whereby the C8H of ATP plays a role in the overall regulation of phosphoryl transfer. This role of the C8H of ATP in the regulation of substrate binding appears to have been conserved in all kinase and as one of the mechanisms associated with binding of ATP. The induction of the C8H to be labile by active site residues coordinated to the ATP purine ring may play a significant role in explaining the broad range of Km associated with kinase enzymes

    The dissociation of ammonium salts and their effect on the physiology and biochemistry of L-lysine synthesis by Corynebacterium glutamicum FP6

    Get PDF
    The availability and assimilation of NH₄⁺ plays an integral role in the growth of microorganisms and the production of amino acids by these organisms. This study investigated the dissociation of NH₄⁺in aqueous solution, its availability and effect on the enzymes of NH₄⁺ assimilation and its influence on lysine production by Corynebacterium glutamicum.In aqueous solution the extent of dissociation of NH₄C1, {NH₄)₂S0₄ and (NH₄)₂HP0₄ increases with decreasing concentration. A model is proposed for the dissociation of these molecules. It is believed that at very low concentrations, dissociation to NH₃ plus the respective counter-ions occurs. At these low concentrations the NH₃ acts as the substrate for glutamine synthetase. At the higher concentrations dissociation is to NH₄⁺ which is the substrate for glutamate dehydrogenase. At these higher concentrations the enzyme activities obtained for glutamate dehydrogenase, at equivalent concentrations of the above ammonium salts, were different when based on the total concentration of NH₄⁺, and similar when based on the concentration of free NH₄⁺. L-Iysine occurs in the +1 ionic form, at pH 7,2. The lysine which is produced during fermentation associates with the anionic counter-ion of the ammonium salt used. The concentration of the free NH₄⁺ in the media appears to affect both the rate of lysine synthesis as well as the yield. The lysine fermentation occurs in two stages; a growth (or replicative) phase, during which very little lysine is produced, and a lysine synthesis (or maturation) phase. During the lysine synthesis phase there is no cell replication, however an increase in the mass of the biomass produced is apparent. Evidence is provided for the possible concomitant synthesis of the the cell wall polymer, glycerol teichoic acid, and lysine. On the basis of this evidence, a nucleotide balance is proposed for lysine and teichoic acid synthesis. The replicative phase and the maturation phase have to be effectively separated to obtain optimal lysine yields and titres. It is believed that teichoic acid synthesis during the replicative phase must be kept to a minimum for optimal yields and titres to be obtained, and on completion of the cell wall and therefore teichoic acid synthesis, lysine synthesis ceases. As the production of lysine appears to be affected by the NH₄⁺ concentration in the culture media, it is proposed that a futile cycle may exist around the transport and assimilation of the NH₄⁺. If the fermentations are run at low free NH₄⁺ concentrations, it was shown that lysine yields of 0,66, on the glucose utilised, are attainable during the fermentation

    Agreement and unlocking at the edge

    Get PDF
    A growing body of work argues that Agree has the effect of “unlocking” certain domains, phases, such that otherwise illicit extraction from them becomes permitted (Rackowski & Richards 2005, van Urk and Richards 2015, Halpert 2016, 2018, Branan 2018). First, we address when such unlocking is required. While some works argue that unlocking is only needed for extraction from deep within a phase, others argue that all extraction requires it. We argue in support of the former view, based on Chichewa facts reported in Mchombo (2004, 2006). Second, we consider the relationship between unlocking effects and phase theory more generally. We argue that the possibility of unlocking indicates that material deep within a phase must not be rendered inaccessible by spellout, or else unlocking effects should be impossible. We explore how unlocking might be handled in the cyclic linearization theory of phases (Fox & Pesetsky 2005, a.o.) which leaves syntactic elements accessible post-spellout

    The role of the C8 proton of ATP in the regulation of phosphoryl transfer within kinases and synthetases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The kinome comprises functionally diverse enzymes, with the current classification indicating very little about the extent of conserved regulatory mechanisms associated with phosphoryl transfer. The apparent <it>K</it><sub>m </sub>of the kinases ranges from less than 0.4 μM to in excess of 1000 μM for ATP. It is not known how this diverse range of enzymes mechanistically achieves the regulation of catalysis via an affinity range for ATP varying by three-orders of magnitude.</p> <p>Results</p> <p>We have demonstrated a previously undiscovered mechanism in kinase and synthetase enzymes where the overall rate of reaction is regulated via the C8-H of ATP. Using ATP deuterated at the C8 position (C8D-ATP) as a molecular probe it was shown that the C8-H plays a direct role in the regulation of the overall rate of reaction in a range of kinase and synthetase enzymes. Using comparative studies on the effect of the concentration of ATP and C8D-ATP on the activity of the enzymes we demonstrated that not only did C8D-ATP give a kinetic isotope effect (KIE) but the KIE's obtained are clearly not secondary KIE effects as the magnitude of the KIE in all cases was at least 2 fold and in most cases in excess of 7 fold.</p> <p>Conclusions</p> <p>Kinase and synthetase enzymes utilise C8D-ATP in preference to non-deuterated ATP. The KIE obtained at low ATP concentrations is clearly a primary KIE demonstrating strong evidence that the bond to the isotopically substituted hydrogen is being broken. The effect of the ATP concentration profile on the KIE was used to develop a model whereby the C8H of ATP plays a role in the overall regulation of phosphoryl transfer. This role of the C8H of ATP in the regulation of substrate binding appears to have been conserved in all kinase and synthetase enzymes as one of the mechanisms associated with binding of ATP. The induction of the C8H to be labile by active site residues coordinated to the ATP purine ring may play a significant role in explaining the broad range of <it>K</it><sub>m </sub>associated with kinase enzymes.</p

    Measuring psychological health in the perinatal period: workshop consensus statement, 19 March 2013

    Get PDF
    This consensus statement is the result of an invited workshop funded by the society for Reproductive and Infant Psychology on Measuring Psychological Health in the Perinatal Period which was held in Oxford on the 19th March 2013. The details of those who participated in the workshop can be found at the end of the consensus statement. The workshop evolved out of recognition that a major limitation to research and practice in the perinatal period is identifying valid, reliable and clinically relevant measures of psychological health

    Conserved phosphoryl transfer mechanisms within kinase families and the role of the C8 proton of ATP in the activation of phosphoryl transfer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The kinome is made up of a large number of functionally diverse enzymes, with the classification indicating very little about the extent of the conserved kinetic mechanisms associated with phosphoryl transfer. It has been demonstrated that C8-H of ATP plays a critical role in the activity of a range of kinase and synthetase enzymes.</p> <p>Results</p> <p>A number of conserved mechanisms within the prescribed kinase fold families have been identified directly utilizing the C8-H of ATP in the initiation of phosphoryl transfer. These mechanisms are based on structurally conserved amino acid residues that are within hydrogen bonding distance of a co-crystallized nucleotide. On the basis of these conserved mechanisms, the role of the nucleotide C8-H in initiating the formation of a pentavalent intermediate between the γ-phosphate of the ATP and the substrate nucleophile is defined. All reactions can be clustered into two mechanisms by which the C8-H is induced to be labile via the coordination of a backbone carbonyl to C6-NH<sub>2 </sub>of the adenyl moiety, namely a "push" mechanism, and a "pull" mechanism, based on the protonation of N7. Associated with the "push" mechanism and "pull" mechanisms are a series of proton transfer cascades, initiated from C8-H, via the tri-phosphate backbone, culminating in the formation of the pentavalent transition state between the γ-phosphate of the ATP and the substrate nucleophile.</p> <p>Conclusions</p> <p>The "push" mechanism and a "pull" mechanism are responsible for inducing the C8-H of adenyl moiety to become more labile. These mechanisms and the associated proton transfer cascades achieve the proton transfer via different family-specific conserved sets of amino acids. Each of these mechanisms would allow for the regulation of the rate of formation of the pentavalent intermediate between the ATP and the substrate nucleophile. Phosphoryl transfer within kinases is therefore a specific event mediated and regulated via the coordination of the adenyl moiety of ATP and the C8-H of the adenyl moiety.</p

    A multiplexed protein microarray for the simultaneous serodiagnosis of human immunodeficiency virus/hepatitis C virus infection and typing of whole blood

    Get PDF
    All donor blood samples must be tested pretransfusion to determine the donor blood type. Standard testing protocols require that assays be performed for important bloodborne pathogens such as hepatitis C, syphilis, hepatitis B, and human immunodeficiency virus. We have demonstrated proof of the concept that a protein microarray can type whole blood and detect antibody to significant pathogens simultaneously from the same donor blood sample. The data collected demonstrate the ability of the array to accurately type blood samples while also detecting the presence of antibodies against both human immunodeficiency virus and hepatitis C virus. In conclusion, we have successfully developed a platform capable of typing human whole blood samples, while at the same time testing for the presence of antibodies specific for human immunodeficiency virus/hepatitis C virus. The major benefits of this system are its amenability to expansion with additional assays, for example, rhesus typing and syphilis and/or hepatitis B virus detection, and also the adaptability of the assay to higher-throughput analysis, currently 16 individual samples per slide, but readily expandable to a 96-well format

    Backbone resonance assignments of the catalytic and regulatory domains of Ca2+/calmodulin-dependent protein kinase 1D

    Get PDF
    CITATION: Tong, Michael H. G. et al. 2020. Backbone resonance assignments of the catalytic and regulatory domains of Ca2+/calmodulin-dependent protein kinase 1D. Biomolecular NMR Assignments, 14:221–225, doi:10.1007/s12104-020-09950-x.The original publication is available at: https://www.ncbi.nlm.nih.govThe CaMK subfamily of Ser/Thr kinases are regulated by calmodulin interactions with their C-terminal regions. They are exemplified by Ca2+/calmodulin dependent protein kinase 1δ which is known as CaMK1D, CaMKIδ or CKLiK. CaMK1D mediates intracellular signalling downstream of Ca2+ influx and thereby exhibits amplifications of Ca2+signals and polymorphisms that have been implicated in breast cancer and diabetes. Here we report the backbone 1H, 13C, 15N assignments of the 38 kDa human CaMK1D protein in its free state, including both the canonical bi-lobed kinase fold as well as the autoinhibitory and calmodulin binding domains.Publisher's versio

    Re-thinking the southern British oppida: networks, kingdoms and material culture

    Get PDF
    Copyright © 2010 SAGE Publications. Open access article.This article examines the role of a range of large settlements in late Iron Age and early Roman southern Britain (c. 100 BC–AD 70) conventionally described as oppida. After reviewing current perspectives on the function and chronology of British oppida, new insights are provided through the statistical analysis of assemblages of brooches and imported ceramics at a broad sample of sites. Analysis of material culture reveals distinct similarities and differences between several groups of sites, often transcending regional traditions and supposed tribal boundaries. This patterning is primarily explained by the emergence of new forms of political organization prior to Roman annexation, particularly the creation of the Southern and Eastern Kingdoms

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function
    corecore