130 research outputs found

    Total internal reflection Raman spectroscopy

    Get PDF
    Total internal reflection (TIR) Raman spectroscopy is an experimentally straightforward, surface-sensitive technique for obtaining chemically specific spectroscopic information from a region within approximately 100–200 nm of a surface. While TIR Raman spectroscopy has long been overshadowed by surface-enhanced Raman scattering, with modern instrumentation TIR Raman spectra can be acquired from sub-nm thick films in only a few seconds. In this review, we describe the physical basis of TIR Raman spectroscopy and illustrate the performance of the technique in the diverse fields of surfactant adsorption, liquid crystals, lubrication, polymer films and biological interfaces, including both macroscopic structures such as the surfaces of leaves, and microscopic structures such as lipid bilayers. Progress, and challenges, in using TIR Raman to obtain depth profiles with sub-diffraction resolution are described

    Surfactant adsorption by total internal reflection Raman spectroscopy. Part III: Adsorption onto cellulose

    Get PDF
    TIR Raman spectroscopy has been used to study the adsorption of surfactants onto cellulose. The cellulose was prepared by Langmuir–Blodgett deposition of trimethylsilylcellulose onto silica followed by removal of the trimethylsilyl groups with acid to generate a hydrophilic surface. The reaction was followed in situ with Raman spectroscopy, revealing a two-step hydrolysis. Adsorption isotherms of hexadecyltrimethylammonium bromide (CTAB) and Triton X-100 (TX-100) on hydrophilic cellulose were obtained by TIR Raman scattering under quasi-equilibrium conditions where the bulk concentration was slowly but continuously varied. The isotherms of both surfactants are almost linear, in contrast to the isotherms on hydrophilic silica. The CTAB isotherm shows hysteresis depending on whether the concentration of the surfactant is increasing or decreasing due to a slow adsorption region. A mixture of TX-100 and CTAB shows ideal adsorption, in contrast to adsorption of the same mixture on silica where there is a strong cooperative interaction at low CTAB surface coverage

    In Situ Fabrication of Polymeric Microcapsules by Ink-Jet Printing of Emulsions

    Get PDF
    Phase separation driven by solvent evaporation of emulsions can be used to create polymeric microcapsules. The combination of emulsion solvent evaporation with ink-jet printing allows the rapid fabrication of polymeric microcapsules at a target location on a surface. The ink is an oil-in-water emulsion containing in the dispersed phase a shell-forming polymer, a core-forming fluid that is a poor solvent for the polymer, and a low-boiling good solvent. After the emulsion is printed onto the substrate, the good solvent evaporates by diffusion through the aqueous phase, and the polymer and the poor solvent phase separate to form microcapsules. The continuous aqueous phase contains polyvinyl alcohol that serves as an emulsifier and a binder of the capsules to the substrate. This method is demonstrated for microcapsules with various shell-forming polymers (polystyrene, poly(methylmethacrylate) and poly(l-lactide)) and core-forming poor solvents (hexadecane and a 4-heptanone/sunflower oil mixture). Cargoes such as fluorescent dyes (Nile Red and tetracyanoquinodimethane) or active ingredients (e.g., the fungicide tebuconazole) can be encapsulated. Uniform microcapsules are obtained by printing emulsions containing monodisperse oil droplets produced in a microfluidic device. We discuss the physical parameters that need to be controlled for the successful fabrication of microcapsules in inkjet printing. The method for rapid, in situ encapsulation could be useful for controlled-release applications such as in agrochemical sprays, fragrances, functional coatings, and topical medicines

    Evaporation of alcohol droplets on surfaces in moist air

    Get PDF
    Droplets of alcohol-based formulations are common in applications from sanitising sprays to printing inks. However, our understanding of the drying dynamics of these droplets on surfaces and the influence of ambient humidity is still very limited. Here, we report the drying dynamics of picoliter droplets of isopropyl alcohol (IPA) deposited on a surface under controlled humidity. Condensation of water vapour in the ambient environment onto alcohol droplets leads to unexpectedly complex drying behaviour. As relative humidity (RH) increases, we observed a variety of phenomena including enhanced spreading, non-monotonic changes in the drying time, the formation of pancake-like shapes that suppress the coffee-ring effect, and the formation of water-rich films around an alcohol-rich drop. We developed a lubrication model that accounts for the coupling between the flow field within the drop, the shape of the drop, and the vapor concentration field. The model reproduces many of the experimentally observed morphological and dynamic features, revealing the presence of unusually large spatial compositional gradients within the evaporating droplet and surface-tension-gradient-driven flows arising from water condensation/evaporation at the surface of the droplet. One unexpected feature from the simulation is that water can evaporate and condense concurrently in different parts of the drop, providing fundamental insights that simpler models based on average fluxes lack. We further observed rim instabilities at higher RH that are well-described by a model based on the Rayleigh-Plateau instability. Our findings have implications for the testing and use of alcohol-based disinfectant sprays and printing inks

    Mechanical characterization of ultralow interfacial tension oil-in-water droplets by thermal capillary wave analysis in a microfluidic device

    Get PDF
    Measurements of the ultralow interfacial tension and surfactant film bending rigidity for micron-sized heptane droplets in bis(2-ethylhexyl) sodium sulfosuccinate-NaCl aqueous solutions were performed in a microfluidic device through the analysis of thermally driven droplet interface fluctuations. The Fourier spectrum of the stochastic droplet interface displacement was measured through bright-field video microscopy and a contour analysis technique. The droplet interfacial tension, together with the surfactant film bending rigidity, was obtained by fitting the experimental results to the prediction of a capillary wave model. Compared to existing methods for ultralow interfacial tension measurements, this contactless, nondestructive, all-optical approach has several advantages, such as fast measurement, easy implementation, cost-effectiveness, reduced amount of liquids, and integration into lab-on-a-chip devices

    ESET histone methyltransferase is essential to hypertrophic differentiation of growth plate chondrocytes and formation of epiphyseal plates

    Get PDF
    AbstractThe ESET (also called SETDB1) protein contains an N-terminal tudor domain that mediates protein–protein interactions and a C-terminal SET domain that catalyzes methylation of histone H3 at lysine 9. We report here that ESET protein is transiently upregulated in prehypertrophic chondrocytes in newborn mice. To investigate the in vivo effects of ESET on chondrocyte differentiation, we generated conditional knockout mice to specifically eliminate the catalytic SET domain of ESET protein only in mesenchymal cells. Such deletion of the ESET gene caused acceleration of chondrocyte hypertrophy in both embryos and young animals, depleting chondrocytes that are otherwise available to form epiphyseal plates for endochondral bone growth. ESET-deficient mice are thus characterized by defective long bone growth and trabecular bone formation. To understand the underlying mechanism for ESET regulation of chondrocytes, we carried out co-expression experiments and found that ESET associates with histone deacetylase 4 to bind and inhibit the activity of Runx2, a hypertrophy-promoting transcription factor. Repression of Runx2-mediated gene transactivation by ESET is dependent on its H3–K9 methyltransferase activity as well as its associated histone deacetylase activity. In addition, knockout of ESET is associated with repression of Indian hedgehog gene in pre- and early hypertrophic chondrocytes. Together, these results provide clear evidence that ESET controls hypertrophic differentiation of growth plate chondrocytes and endochondral ossification during embryogenesis and postnatal development

    An evaluation of indirubin analogues as phosphorylase kinase inhibitors

    Get PDF
    Phosphorylase kinase (PhK) has been linked with a number of conditions such as glycogen storage diseases, psoriasis, type 2 diabetes and more recently, cancer (Camus S. et al., Oncogene 2012, 31, 4333). However, with few reported structural studies on PhK inhibitors, this hinders a structure based drug design approach. In this study, the inhibitory potential of 38 indirubin analogues have been investigated. 11 of these ligands had IC50 values in the range 0.170 – 0.360 µM, with indirubin-3’-acetoxime (1c) the most potent. 7-bromoindirubin-3’-oxime (13b), an antitumor compound which induces caspase-independent cell-death (Ribas J. et al., Oncogene, 2006, 25, 6304) is revealed as a specific inhibitor of PhK (IC50 = 1.8 µM). Binding assay experiments performed using both PhK-holo and PhK-γtrnc confirmed the inhibitory effects to arise from binding at the kinase domain (γ subunit). High level computations using QM/MM-PBSA binding free energy calculations were in good agreement with experimental binding data, as determined using statistical analysis, and support binding at the ATP-binding site. The value of a QM description for the binding of halogenated ligands exhibiting -hole effects is highlighted. A new statistical metric, the ‘sum of the modified logarithm of ranks’ (SMLR), has been defined which measures performance of a model for both the “early recognition” (ranking earlier/higher) of active compounds and their relative ordering by potency. Through a detailed structure activity relationship analysis considering other kinases (CDK2, CDK5 and GSK-3α/β), 6’(Z) and 7(L) indirubin substitutions have been identified to achieve selective PhK inhibition. The key PhK binding site residues involved can also be targeted using other ligand scaffolds in future work

    Changes in the total leukocyte and platelet counts in Papuan and non Papuan adults from northeast Papua infected with acute Plasmodium vivax or uncomplicated Plasmodium falciparum malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are limited data on the evolution of the leukocyte and platelet counts in malaria patients.</p> <p>Methods</p> <p>In a clinical trial of chloroquine vs. chloroquine plus doxycycline vs. doxycycline alone against <it>Plasmodium vivax </it>(n = 64) or <it>Plasmodium falciparum </it>(n = 98) malaria, the total white cell (WCC) and platelet (PLT) counts were measured on Days 0, 3, 7 and 28 in 57 indigenous Papuans with life long malaria exposure and 105 non Papuan immigrants from other parts of Indonesia with limited malaria exposure.</p> <p>Results</p> <p>The mean Day 0 WCC (n = 152) was 6.492 (range 2.1–13.4) × 10<sup>9</sup>/L and was significantly lower in the Papuans compared to the non Papuans: 5.77 × 10<sup>9</sup>/L vs. 6.86 × 10<sup>9</sup>/L, difference = -1.09 [(95% CI -0.42 to -1.79 × 10<sup>9</sup>/L), P = 0.0018]. 14 (9.2%) and 9 (5.9%) patients had leukopaenia (<4.0 × 10<sup>9</sup>/L) and leukocytosis (>10.0 × 10<sup>9</sup>/L), respectively. By Day 28, the mean WCC increased significantly (P = 0.0003) from 6.37 to 7.47 × 10<sup>9</sup>/L (73 paired values) and was similar between the two groups. Ethnicity was the only WCC explanatory factor and only on Day 0.</p> <p>The mean Day 0 platelet count (n = 151) was 113.0 (range 8.0–313.0) × 10<sup>9</sup>/L and rose significantly to 186.308 × 10<sup>9</sup>/L by Day 28 (P < 0.0001). There was a corresponding fall in patient proportions with thrombocytopaenia (<150 × 10<sup>9</sup>/L): 119/151 (78.81%) vs. 16/73 (21.92%, P < 0.00001). Papuan and non Papuan mean platelet counts were similar at all time points. Only malaria species on Day 0 was a significant platelet count explanatory factor. The mean D0 platelet counts were significantly lower (P = 0.025) in vivax (102.022 × 10<sup>9</sup>/L) vs. falciparum (122.125 × 10<sup>9</sup>/L) patients.</p> <p>Conclusion</p> <p>Changes in leukocytes and platelets were consistent with other malaria studies. The Papuan non Papuan difference in the mean Day 0 WCC was small but might be related to the difference in malaria exposure.</p
    corecore