2,253 research outputs found
Intermittent Computing: Challenges and Opportunities
The maturation of energy-harvesting technology and ultra-low-power computer systems has led to the advent of intermittently-powered, batteryless devices that operate entirely using energy extracted from their environment. Intermittently operating devices present a rich vein of programming languages research challenges and the purpose of this paper is to illustrate these challenges to the PL research community. To provide depth, this paper includes a survey of the hardware and software design space of intermittent computing platforms. On the foundation of these research challenges and the state of the art in intermittent hardware and software, this paper describes several future PL research directions, emphasizing a connection between intermittence, distributed computing, energy-aware programming and compilation, and approximate computing. We illustrate these connections with a discussion of our ongoing work on programming for intermittence, and on building and simulating intermittent distributed systems
Hit and run versus long-term activation of PARP-1 by its different domains fine-tunes nuclear processes.
Poly(ADP-ribose) polymerase 1 (PARP-1) is a multidomain multifunctional nuclear enzyme involved in the regulation of the chromatin structure and transcription. PARP-1 consists of three functional domains: the N-terminal DNA-binding domain (DBD) containing three zinc fingers, the automodification domain (A), and the C-terminal domain, which includes the protein interacting WGR domain (W) and the catalytic (Cat) subdomain responsible for the poly(ADP ribosyl)ating reaction. The mechanisms coordinating the functions of these domains and determining the positioning of PARP-1 in chromatin remain unknown. Using multiple deletional isoforms of PARP-1, lacking one or another of its three domains, as well as consisting of only one of those domains, we demonstrate that different functions of PARP-1 are coordinated by interactions among these domains and their targets. Interaction between the DBD and damaged DNA leads to a short-term binding and activation of PARP-1. This hit and run activation of PARP-1 initiates the DNA repair pathway at a specific point. The long-term chromatin loosening required to sustain transcription takes place when the C-terminal domain of PARP-1 binds to chromatin by interacting with histone H4 in the nucleosome. This long-term activation of PARP-1 results in a continuous accumulation of pADPr, which maintains chromatin in the loosened state around a certain locus so that the transcription machinery has continuous access to DNA. Cooperation between the DBD and C-terminal domain occurs in response to heat shock (HS), allowing PARP-1 to scan chromatin for specific binding sites
Statin-induced mevalonate pathway inhibition attenuates the growth of mesenchymal-like cancer cells that lack functional E-cadherin mediated cell cohesion
The cholesterol reducing drugs, statins, exhibit anti-tumor effects against cancer stem cells and various cancer cell lines, exert potent additivity or synergy with existing chemotherapeutics in animal models of cancer and may reduce cancer incidence and cancer related mortality in humans. However, not all tumor cell lines are sensitive to statins, and clinical trials have demonstrated mixed outcomes regarding statins as anticancer agents. Here, we show that statin-induced reduction in intracellular cholesterol levels correlate with the growth inhibition of cancer cell lines upon statin treatment. Moreover, statin sensitivity segregates with abundant cytosolic vimentin expression and absent cell surface E-cadherin expression, a pattern characteristic of mesenchymal-like cells. Exogenous expression of cell surface E-cadherin converts statin- sensitive cells to a partially resistant state implying that statin resistance is in part dependent on the tumor cells attaining an epithelial phenotype. As metastasizing tumor cells undergo epithelial to mesenchymal transition during the initiation of the metastatic cascade, statin therapy may represent an effective approach to targeting the cells most likely to disseminate
Marine Strategy Framework Directive - Task Group 10 Report Marine Litter
The Marine Strategy Framework Directive (2008/56/EC) (MSFD) requires that the European Commis-sion (by 15 July 2010) should lay down criteria and methodological standards to allow consistency in approach in evaluating the extent to which Good Environmental Status (GES) is being achieved. ICES and JRC were contracted to provide scientific support for the Commission in meeting this obligation.
A total of 10 reports have been prepared relating to the descriptors of GES listed in Annex I of the Directive. Eight reports have been prepared by groups of independent experts coordinated by JRC and ICES in response to this contract. In addition, reports for two descriptors (Contaminants in fish and other seafood and Marine Litter) were written by expert groups coordinated by DG SANCO and IFREMER respectively.
A Task Group was established for each of the qualitative Descriptors. Each Task Group consisted of selected experts providing experience related to the four marine regions (the Baltic Sea, the North-east Atlantic, the Mediterranean Sea and the Black Sea) and an appropriate scope of relevant scien-tific expertise. Observers from the Regional Seas Conventions were also invited to each Task Group to help ensure the inclusion of relevant work by those Conventions. This is the report of Task Group 10 Marine litter.JRC.DDG.H.5-Rural, water and ecosystem resource
Evolution of bias in different cosmological models
We study the evolution of the halo-halo correlation function and bias in four
cosmological models (LCDM, OCDM, tauCDM, and SCDM) using very high-resolution
N-body simulations. The high force and mass resolution allows dark matter (DM)
halos to survive in the tidal fields of high-density regions and thus prevents
the ambiguities related with the ``overmerging problem.'' This allows us to
estimate for the first time the evolution of the correlation function and bias
at small (down to ~100/h kpc) scales. We find that at all epochs the 2-point
correlation function of galaxy-size halos xi_hh is well approximated by a
power-law with slope ~1.6-1.8. The difference between the shape of xi_hh and
the shape of the correlation function of matter results in the scale-dependent
bias at scales <7/h Mpc, which we find to be a generic prediction of the
hierarchical models. The bias evolves rapidly from a high value of ~2-5 at
z~3-7 to the anti-bias of b~0.5-1 at small <5/h Mpc scales at z=0. We find that
our results agree well with existing clustering data at different redshifts.
Particularly, we find an excellent agreement in both slope and the amplitude
between xi_hh(z=0) in our LCDM simulation and the galaxy correlation function
measured using the APM galaxy survey. At high redshifts, the observed
clustering of the Lyman-break galaxies is also well reproduced by the models.
The agreement with the data at high and low z indicates the general success of
the hierarchical models of structure formation in which galaxies form inside
the host DM halos. (Abridged)Comment: submitted to the Astrophys.Journal; 21 pages, LaTeX (uses
emulateapj.sty); full resolution versions of figs.1 and 2 are available at
http://astro.nmsu.edu/~akravtso/GROUP/group_publications.html or at
ftp://charon.nmsu.edu/pub/kravtsov/PAPERS/Bias
Observation of Antiferroelectric Domain Walls in a Uniaxial Hyperferroelectric
Ferroelectric domain walls are a rich source of emergent electronic
properties and unusual polar order. Recent studies showed that the
configuration of ferroelectric walls can go well beyond the conventional
Ising-type structure. N\'eel-, Bloch-, and vortex-like polar patterns have been
observed, displaying strong similarities with the spin textures at magnetic
domain walls. Here, we report the discovery of antiferroelectric domain walls
in the uniaxial ferroelectric PbGeO. We resolve highly
mobile domain walls with an alternating displacement of Pb atoms, resulting in
a cyclic 180 flip of dipole direction within the wall. Density
functional theory calculations reveal that PbGeO is
hyperferroelectric, allowing the system to overcome the depolarization fields
that usually suppress antiparallel ordering of dipoles along the longitudinal
direction. Interestingly, the antiferroelectric walls observed under the
electron beam are energetically more costly than basic head-to-head or
tail-to-tail walls. The results suggest a new type of excited domain-wall
state, expanding previous studies on ferroelectric domain walls into the realm
of antiferroic phenomena
V2494 cyg: A unique FU ori type object in the cygnus OB7 complex
A photometric and spectral study of the variable star V2494 Cyg in the L 1003 dark cloud is presented. The brightness of the star, formerly known as HH 381 IRS, increased by 2.5 mag in R (probably in the 1980s) and since then has remained nearly constant. Since the brightness increase, V2494 Cyg has illuminated a bipolar cometary nebula. The stellar spectrum has several features typical of the FU Ori (FUor) type, plus it exhibits very strong Ha and forbidden emissionlines with high-velocity components. These emission lines originate in the Herbig-Haro (HH) jet near the star. The kinematic age of the jet is consistent with it forming at the time of the outburst leading to the luminosity increase. V2494 Cyg also produces a rather extended outflow; it is the first known FUor with both an observed outburst and a parsec-sized HH flow. The nebula, illuminated by V2494 Cyg, possesses similar morphological and spectral characteristics to Hubble's variable nebula (R Monocerotis/NGC 2261). © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society
- …