1,122 research outputs found

    Spectrum of Relativistic Fermions in a 2d Doped Lattice

    Full text link
    Motivated by some previous work on fermions on random lattices and by suggestions that impurities could trigger parity breaking in 2d crystals, we have analyzed the spectrum of the Dirac equation on a two dimensional square lattice where sites have been removed randomly --- a doped lattice. We have found that the system is well described by a sine-Gordon action. The solitons of this model are the lattice fermions, which pick a quartic interaction due to the doping and become Thirring fermions. They also get an effective mass different from the lagrangian mass. The system seems to exhibit spontaneous symmetry breaking, exactly as it happens for a randomly triangulated lattice. The associated ``Goldstone boson" is the sine-Gordon scalar. We argue, however, that the peculiar behaviour of the chiral condensate is due to finite size effects.Comment: 11 page

    Antibacterial activity of a chitosan-PVA-Ag+-Tobermorite composite for periodontal repair

    Get PDF
    A polymer-mineral composite was prepared by solvent casting a mixture of chitosan, poly(vinyl alcohol), and Ag+-exchanged tobermorite in dilute acetic acid and characterised by scanning electron microscopy and Fourier transform infrared spectroscopy. The in vitro bioactivity of the CPTAg membrane was confirmed by the formation of hydroxyapatite on its surface in simulated body fluid. The alkaline dissolution products of the tobermorite lattice buffered the acidic breakdown products of the chitosan polymer and the presence of silver ions resulted in marked antimicrobial action against S. aureus, P. aeruginosa, and E. coli. The in vitro cytocompatibility of the CPTAg membrane was confirmed using MG63 osteosarcoma cells. The findings of this preliminary study have indicated that chitosan-poly(vinyl alcohol)-Ag+-tobermorite composites may be suitable materials for guided tissue regeneration applications

    A unified model for tidal disruption events

    Full text link
    In the past few years wide-field optical and UV transient surveys as well as X-ray telescopes have allowed us to identify a few dozen candidate tidal disruption events (TDEs). While in theory the physical processes in TDEs are expected to be ubiquitous, a few distinct classes of TDEs have been observed. Some TDEs radiate mainly in NUV/optical while others produce prominent X-rays. Moreover, relativistic jets have been observed in only a handful of TDEs. This diversity might be related to the details of the super-Eddington accretion and emission physics relevant to TDE disks. In this Letter, we utilize novel three-dimensional general relativistic radiation magnetohydrodynamics simulations to study the super-Eddington compact disk phase expected in TDEs. Consistent with previous studies, geometrically thick disks, wide-angle optically-thick fast outflows and relativistic jets are produced. The outflow density and velocity depend sensitively on the inclination angle, and hence so does the reprocessing of emission produced from the inner disk. We then use Monte-Carlo radiative transfer to calculate the reprocessed spectra and find that that the observed ratio of optical to X-ray fluxes increases with increasing inclination angle. This naturally leads to a unified model for different classes of TDEs in which the spectral properties of the TDE depend mainly on the viewing-angle of the observer with respect to the orientation of the disk.Comment: Accepted to ApJ Letter

    The Higgs Mechanism in Non-commutative Gauge Theories

    Get PDF
    This paper investigates the non-commutative version of the Abelian Higgs model at the one loop level. We find that the BRST invariance of the theory is maintained at this order in perturbation theory, rendering the theory one-loop renormalizable. Upon removing the gauge field from the theory we also obtain a consistent continuum renormalization of the broken O(2) linear sigma model, contradicting results found in the literature. The beta functions for the various couplings of the gauged U(1) theory are presented, as are the divergent contributions to every one particle irreducible (1PI) function. We find that all physical couplings and masses are gauge independent. A brief discussion concerning the symmetries PP, CC, and TT in this theory is also given.Comment: 34 pgs, typos corrected, references adde

    Confinement and chiral condensates in 2-d QED with massive N-flavor fermions

    Full text link
    We evaluate Polyakov loops and string tension in two-dimensional QED with both massless and massive NN-flavor fermions at zero and finite temperature. External charges, or external electric fields, induce phases in fermion masses and shift the value of the vacuum angle parameter θ\theta, which in turn alters the chiral condensate. In particular, in the presence of two sources of opposite charges, qq and q-q, the shift in θ\theta is 2π(q/e)2\pi(q/e) independent of NN. The string tension has a cusp singularity at θ=±π\theta=\pm\pi for N2N\ge 2 and is proportional to m2N/(N+1)m^{2N/(N+1)} at T=0T=0.Comment: 14 pages. LaTex + 2 postscript figures, uses epsf.st

    Could the photon dispersion relation be non-linear ?

    Full text link
    The free photon dispersion relation is a reference quantity for high precision tests of Lorentz Invariance. We first outline theoretical approaches to a conceivable Lorentz Invariance Violation (LIV). Next we address phenomenological tests based on the propagation of cosmic rays, in particular in Gamma Ray Bursts (GRBs). As a specific concept, which could imply LIV, we then focus on field theory in a non-commutative (NC) space, and we present non-perturbative results for the dispersion relation of the NC photon.Comment: 9 pages, 5 figures, talk presented at the 4. EU RTN Workshop on "Constituents, Fundamental Forces and Symmetries of the Universe" in Varna, Sept. 2008. References adde

    Genome-scale fitness profile of Caulobacter crescentus grown in natural freshwater

    Get PDF
    © 2018, International Society for Microbial Ecology. Bacterial genomes evolve in complex ecosystems and are best understood in this natural context, but replicating such conditions in the lab is challenging. We used transposon sequencing to define the fitness consequences of gene disruption in the bacterium Caulobacter crescentus grown in natural freshwater, compared with axenic growth in common laboratory media. Gene disruptions in amino-acid and nucleotide sugar biosynthesis pathways and in metabolic substrate transport machinery impaired fitness in both lake water and defined minimal medium relative to complex peptone broth. Fitness in lake water was enhanced by insertions in genes required for flagellum biosynthesis and reduced by insertions in genes involved in biosynthesis of the holdfast surface adhesin. We further uncovered numerous hypothetical and uncharacterized genes for which disruption impaired fitness in lake water, defined minimal medium, or both. At the genome scale, the fitness profile of mutants cultivated in lake water was more similar to that in complex peptone broth than in defined minimal medium. Microfiltration of lake water did not significantly affect the terminal cell density or the fitness profile of the transposon mutant pool, suggesting that Caulobacter does not strongly interact with other microbes in this ecosystem on the measured timescale. Fitness of select mutants with defects in cell surface biosynthesis and environmental sensing were significantly more variable across days in lake water than in defined medium, presumably owing to day-to-day heterogeneity in the lake environment. This study reveals genetic interactions between Caulobacter and a natural freshwater environment, and provides a new avenue to study gene function in complex ecosystems

    An agrogeophysical modelling framework for the detection of soil compaction spatial variability due to grazing using field-scale electromagnetic induction data.

    Get PDF
    Soil compaction is a regarded as a major environmental and economical hazard, degrading soils across the world. Changes in soil properties due to compaction are known to lead to decrease in biomass and increase in greenhouse gas emissions, nutrient leaching and soil erosion. Quantifying adverse impacts of soil compaction and developing strategies for amelioration relies on an understanding of soil compaction extent and temporal variability. The main indicators of soil compaction (i.e., reduction of pore space, increase in bulk density and decrease in soil transport properties) are relatively easy to quantify in laboratory conditions but such traditional point-based methods offer little information on soil compaction extent at the field scale. Recently, geophysical methods have been proposed to provide non-invasive information about soil compaction. In this work, we developed an agrogeophysical modelling framework to help address the challenges of characterizing soil compaction across grazing paddocks using electromagnetic induction (EMI) data. By integrative modelling of grazing, soil compaction, soil processes and EMI resistivity anomalies, we demonstrate how spatial patterns of EMI observations can be linked to management leading to soil compaction and concurrent modifications of soil functions. The model was tested in a dairy farm in the midlands of Ireland that has been grazed for decades and shows clear signatures of grazing-induced compaction. EMI data were collected in the summer of 2021 and autumn of 2022 under dry and wet soil moisture conditions, respectively. For both years, we observed decreases of apparent electrical resistivity at locations that with visible signatures of compaction such as decreased vegetation and water ponding (e.g., near the water troughs and gates). A machine learning algorithm was used to cluster EMI data with three unique cluster signatures assumed to be representative of heavy, moderately, and non-compacted field zones. We conducted 1D process-based simulations corresponding to non-compacted and compacted soils. The modelled EMI signatures agree qualitatively and quantitatively with the measured EMI data, linking decreased electrical resistivities to zones that were visibly compacted. By providing a theoretical framework based on mechanistic modelling of soil management and compaction, our work may provide a strategy for utilizing EMI data for detection of soil degradation due to compaction

    Modelling changes in soil structure caused by livestock treading

    Get PDF
    Increased soil compaction resulting from livestock treading and use of heavy machinery is a major environmental hazard often linked to degradation of the soil ecosystem and economic services. However, there is a weak quantitative understanding of the spatial and temporal extent of soil compaction and how it modifies soil properties and associated functions. To address this challenge, we developed a framework for systematic modelling soil compaction caused by grazing animals. We considered random movement of livestock in a confined field to describe the spatial variation in the soil that is discretized in square cells with given properties. We then used a rheology model based on Bingham’s law to infer compaction-induced changes in soil bulk density and porosity. An associated reduction of saturated hydraulic conductivity is obtained from soil porosity predictions by empirically accounting for macroporosity reduction using a dual-porosity permeability model. This model is coupled with an empirical model of soil structure recovery to account for biological activity (i.e., earthworms and roots). The modelling framework effectively captures primary effects of soil compaction on key soil properties despite lack of explicit consideration of complex effects of compaction such as redistribution of pore sizes and changes in pore connectivity. We tested the model using bulk density, macroporosity and saturated hydraulic conductivity data from a grazing study at the Tussock Creek experimental platform in New Zealand. Data were successfully reproduced by the model. Compaction and recovery trends can be interpreted in terms of model properties associated with management, soil texture and environmental conditions. If data are available for calibration of such properties, the model could be used in agro-ecosystem modelling applications to assess the environmental impacts (such as surface runoff and green-house gas emissions) of livestock-grazing systems and inform management strategies for ameliorating these
    corecore