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In this paper we study the nonlinear Schrödinger–Maxwell equations{−�u + V (x)u + φu = |u|p−1u in R
3,

−�φ = u2 in R
3.

If V is a positive constant, we prove the existence of a ground state solution (u, φ) for 2 <

p < 5. The non-constant potential case is treated for 3 < p < 5, and V possibly unbounded
below. Existence and nonexistence results are proved also when the nonlinearity exhibits
a critical growth.
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1. Introduction

In this paper we consider the following system{−�u + V (x)u + φu = f ′(u) in R
3,

−�φ = u2 in R
3,

(SM)

where V : R
3 → R and f ∈ C1(R,R). Such a system, also known as the nonlinear Schrödinger–Poisson, arises in an inter-

esting physical context. In fact, according to a classical model, the interaction of a charge particle with an electromagnetic
field can be described by coupling the nonlinear Schrödinger’s and the Maxwell’s equations (we refer to [3] for more details
on the physical aspects). In particular, if we are looking for electrostatic-type solutions, we just have to solve (SM). In
[3], the potential V has been supposed constant, and the linear version of the problem (i.e. f ≡ 0) has been studied as
an eigenvalue problem for a bounded domain. The linear Schrödinger–Maxwell equations have been treated also in [10,12],
where the potential V has been supposed radial.

The nonlinear case has been considered in [1,11,14,16,17,23], where existence and multiplicity results have been stated
when V is a positive constant. By means of the Pohozaev’s fibering method, a multiplicity result has been proved in [24]
also in the non-homogeneous case, that is when a non-homogeneous term g(x) ∈ L2(R3) is added on the right-hand side of
the first equation of (SM) (see also [7]). On the other hand, nonexistence results for (SM) can be found in [15,23]. For a
related problem see [21].

Up to our knowledge, the literature does not contain any result on the existence of ground state solutions to the problem
(SM), namely couples (u, φ) which solve (SM) and minimize the action functional associated to (SM) among all possible
solutions: this is the aim of our paper. The problem of finding such a type of solutions is a very classical problem: it has
been introduced by Coleman, Glazer and Martin in [13], and reconsidered by Berestycki and Lions in [5] for a class of
nonlinear equations including the Schrödinger’s one. Later on the existence and the profile of ground state solutions have
been studied for a plethora of problems by many authors; of course we cannot mention all these results.

In the first part of the paper, we are interested in considering pure power type nonlinearities so that the problem we
will deal with becomes{−�u + V (x)u + φu = |u|p−1u in R

3,

−�φ = u2 in R
3,

(1)

where 2 < p < 5. The solutions (u, φ) ∈ H1(R3)×D1,2(R3) of (1) are the critical points of the action functional E : H1(R3)×
D1,2(R3) → R, defined as

E(u, φ) := 1

2

∫
R3

|∇u|2 + V (x)u2 − 1

4

∫
R3

|∇φ|2 + 1

2

∫
R3

φu2 − 1

p + 1

∫
R3

|u|p+1.

We are interested in finding a ground state solution of (1), that is a solution (u0, φ0) of (1) such that E(u0, φ0) � E(u, φ),
for any solution (u, φ) of (1).

The action functional E exhibits a strong indefiniteness, namely it is unbounded both from below and from above on
infinite dimensional subspaces. This indefiniteness can be removed using the reduction method described in [4], by which
we are led to study a one variable functional that does not present such a strongly indefinite nature.

The main difficulty related with the problem of finding the critical points of the new functional consists in the lack
of compactness of the Sobolev spaces embeddings in the unbounded domain R

3. Usually, at least when V is radially
symmetric, such a difficulty is overcome by restricting the functional to the natural constraint of the radial functions where
compact embeddings hold. In particular, in [14] a radial solution having minimal energy among all the radial solutions
has been found. However we are not able to say if that solution actually is a ground state for our equation. This is the
reason why we will use an alternative method, based on a concentration-compactness argument on suitable measures, to
recover compactness. Such an approach, very standard in studying the compactness in problems involving the Schrödinger
equation, seems to be quite new for the nonlinear Schrödinger–Maxwell equations and presents several difficulties due to
the coupling.

We analyze two different situations. First we assume that V is a positive constant and we look for a minimizer of the
reduced functional restricted to a suitable manifold M introduced by Ruiz in [23]. Such a manifold has two interesting
features: it is a natural constraint for the reduced functional and it contains, in a sense that we will explain later (see
Remark 2.2), every solution of the problem (1). The main result we get is the following

Theorem 1.1. If V is a positive constant, then the problem (1) has a ground state solution for any p ∈ ]2,5[.

Remark 1.2. By using the strong maximum principle and quite standard arguments, it is easy to see that such a ground
state solution does not change sign, so we can assume it positive.

Afterwards we study (1) assuming the following hypotheses on V :
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(V1) V : R
3 → R is a measurable function;

(V2) V∞ := lim|y|→∞ V (y) � V (x), for almost every x ∈ R
3, and the inequality is strict in a non-zero measure domain;

(V3) there exists 	C > 0 such that, for any u ∈ H1(R3),∫
R3

|∇u|2 + V (x)u2 �	C‖u‖2.

Remark 1.3. These hypotheses on V , which have been introduced to study singular nonlinear Schrödinger equations in [18],
are satisfied by a large class of potentials including those most meaningful by a physical point of view. Here we give some
examples of admissible potentials V : R

3 → R:

1. V (x) = V 1 − λ|x|−α , where V 1 is a positive constant, α = 1,2 and λ is a positive constant small enough;
2. V (x) = V 1(x) − λ|x|−α , where V 1 is a potential bounded below by a positive constant and satisfying (V2), α = 1,2 and

λ is a sufficiently small positive constant;
3. V (x) = V 1(x) − λV 2(x), where V 1 is a potential bounded below by a positive constant and satisfying (V2), λ is a

sufficiently small positive constant and V 2 is a positive function such that

∃α1 > 0, α2 � 0:
∫
R3

V 2(x)u2 �
∫
R3

α1|∇u|2 + α2u2, for any u ∈ H1(
R

3),
and

lim|x|→+∞ V 2(x) = 0.

Because of technical difficulties related with the presence of the potential, we are not allowed to use the same device
as in the previous case. In particular the use of the Ruiz’ constraint appears quite involved, and minimizing the functional
on the Nehari manifold turns out to be a more natural approach. However this causes that only the case 3 < p < 5 can be
considered.

Another difficulty consists in the fact that we are not allowed to repeat the same concentration and compactness argu-
ment on positive measures as in the constant potential case. The reason is that, since V may have some singularities, we
have no way to affirm that the integral∫

Ω

|∇u|2 + V (x)|u|2

is nonnegative for any u ∈ H1(R3) and Ω ⊂ R
3, and consequently the measures could be not positive. We get the following

Theorem 1.4. If V satisfies (V1)–(V3), then the problem (1) has a ground state solution for any p ∈ ]3,5[.

Theorems 1.1 and 1.4 will be proved in Section 2.
It is remarkable that, up to our knowledge, this latter theorem is the first existence result obtained for (1) when V is

non-radial, and the nonlinearity is superlinear. Actually, in [26], existence and nonexistence results have been proved when
the nonlinearity is asymptotically linear. However, the device used in [26] seems that does not work for nonlinearities such
as |u|p−1u, with 1 < p < 5.

In the second part of the paper we consider the critical case, namely the case when the nonlinearity presents at infinity
the same behavior of the power t2∗−1, where 2∗ = 6 is the critical exponent for the Sobolev embeddings in dimension 3.
Here a further obstacle to compactness arises: in fact, it is well known that the embedding of the space H1(Ω) into the
Lebesgue space L2∗

(Ω) is not compact, even if Ω is a bounded set in R
3.

The problem becomes{−�u + V (x)u + φu = u5 in R
3,

−�φ = u2 in R
3.

(2)

By [15], we have the following

Theorem 1.5 (D’Aprile and Mugnai [15]). Suppose that V is a positive constant. Let (u, φ) ∈ H1(R3) ×D1,2(R3) be a solution of the
problem (2), then u = φ = 0.

We extend this nonexistence result to the case of a non-constant potential V . We prove the following nonexistence
theorem, based on a Pohozaev-type identity.
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Theorem 1.6. Suppose that V satisfies

(V4) V ∈ C1(R3,R);
(V5) 0 < C3 � V (x) � C4 , for all x ∈ R

3;
(V6) 0 � 2V (x) + (∇V (x) | x), for all x ∈ R

3 .

Let (u, φ) ∈ H1(R3) ×D1,2(R3) be a solution of the problem (2), then u = φ = 0.

Then, in the same spirit of [6] (see also [8] for the Klein–Gordon–Maxwell equation), we add a lower order perturbation
to the first equation of (2), namely we look for solutions to the system{−�u + V (x)u + φu = |u|q−1u + u5 in R

3,

−�φ = u2 in R
3,

(3)

where q ∈ ]3,5[. The solutions (u, φ) ∈ H1(R3)×D1,2(R3) of (3) are the critical points of the action functional E∗ : H1(R3)×
D1,2(R3) → R, defined as

E∗(u, φ) := 1

2

∫
R3

|∇u|2 + V (x)u2 − 1

4

∫
R3

|∇φ|2 + 1

2

∫
R3

φu2 − 1

q + 1

∫
R3

|u|q+1 − 1

6

∫
R3

u6.

The effect of the additive perturbation is to lower the energy. This causes that the ground state level of the functional falls
into an interval where compactness holds. As a consequence we get the following two results, respectively for the constant
and the non-constant potential case:

Theorem 1.7. Let V be a positive constant. Then the problem (3) has a ground state solution.

Theorem 1.8. Let V satisfy (V1)–(V3). Then the problem (3) has a ground state solution.

We will prove these three last theorems in Section 3.

Notation.

• For any 1 � s < +∞, Ls(R3) is the usual Lebesgue space endowed with the norm

‖u‖s
s :=

∫
R3

|u|s;

• H1(R3) is the usual Sobolev space endowed with the norm

‖u‖2 :=
∫
R3

|∇u|2 + u2;

• D1,2(R3) is completion of C∞
0 (R3) with respect to the norm

‖u‖2
D1,2(R3)

:=
∫
R3

|∇u|2;

• for any r > 0, x ∈ R
3 and A ⊂ R

3

Br(x) := {
y ∈ R

3
∣∣ |y − x| � r

}
,

Br := {
y ∈ R

3
∣∣ |y| � r

}
,

Ac := R
3 \ A;

• C , C ′ , Ci are positive constants which can change from line to line;
• on(1) is a quantity which goes to zero as n → +∞.
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2. The subcritical case

2.1. Some preliminary results

We first recall some well-known facts (see, for instance [3,10–12,14,23]). For every u ∈ L12/5(R3), there exists a unique
φu ∈D1,2(R3) solution of

−�φ = u2 in R
3.

It can be proved that (u, φ) ∈ H1(R3) × D1,2(R3) is a solution of (1) if and only if u ∈ H1(R3) is a critical point of the
functional I : H1(R3) → R defined as

I(u) = 1

2

∫
R3

|∇u|2 + V (x)u2 + 1

4

∫
R3

φuu2 − 1

p + 1

∫
R3

|u|p+1, (4)

and φ = φu .
The functions φu possess the following properties (see [14] and [23]).

Lemma 2.1. For any u ∈ H1(R3), we have:

(i) ‖φu‖D1,2(R3) � C‖u‖2, where C does not depend from u. As a consequence there exists C ′ > 0 such that∫
R3

φuu2 � C ′‖u‖4;

(ii) φu � 0;

(iii) for any t > 0: φtu = t2φu;
(iv) for any θ > 0: φuθ (x) = θ2φu(θx), where uθ (x) = θ2u(θx);

(v) for any Ω ⊂ R
3 measurable,∫

Ω

φuu2 =
∫
Ω

∫
R3

u2(x)u2(y)

|x − y| dx dy.

2.2. The constant potential case

In this section we will assume that V is a positive constant. Without lost of generality, we suppose V ≡ 1. It can be
proved (see [15,23]) that if (u, φ) ∈ H1(R3) × D1,2(R3) is a solution of (1), then it satisfies the following Pohozaev type
identity∫

R3

1

2
|∇u|2 + 3

2
u2 + 5

4
φu2 − 3

p + 1
|u|p+1 = 0. (5)

As in [23], we introduce the following manifold

M := {
u ∈ H1(

R
3) \ {0} ∣∣ G(u) = 0

}
,

where

G(u) :=
∫
R3

3

2
|∇u|2 + 1

2
u2 + 3

4
φuu2 − 2p − 1

p + 1
|u|p+1.

Remark 2.2. Observe that if u ∈ H1(R3) is a nontrivial critical point of I , then u ∈ M, since G(u) = 0 can be obtained by
a linear combination of 〈I ′(u), u〉 = 0 and (5), with φ = φu . As a consequence if (u, φ) ∈ H1(R3) × D1,2(R3) is a solution
of (1), then u ∈M.

The next lemma describes some properties of the manifold M:

Lemma 2.3.

1. For any u ∈ H1(R3), u �= 0, there exists a unique number θ̄ > 0 such that uθ̄ ∈M (where uθ̄ is defined in Lemma 2.1). Moreover

I(uθ̄ ) = max
θ�0

I(uθ );
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2. there exists a positive constant C , such that for all u ∈M, ‖u‖p+1 � C ;
3. M is a natural constraint of I , namely every critical point of I|M is a critical point for I.

Proof. We refer to [23]. In particular, as regards point 3, we have to point out that Ruiz in [23] has just proved that the
minimum of I|M is in fact a critical point of I: the same arguments can be adapted to prove that M is a natural constraint
of I . �

By 3 of Lemma 2.3 we are allowed to look for critical points of I restricted to M.
With an abuse of notations, we denote by θ : H1(R3) \ {0} → R+ also the map such that for any u ∈ H1(R3), u �= 0:

I(uθ(u)) = max
θ�0

I(uθ ).

By 1 of Lemma 2.3, it is well defined.
Set

c1 = inf
g∈Γ

max
θ∈[0,1] I

(
g(θ)

)
, c2 = inf

u �=0
max
θ�0

I(uθ ), c3 = inf
u∈M

I(u),

where

Γ = {
g ∈ C

([0,1], H1(
R

3)) ∣∣ g(0) = 0, I
(

g(1)
)
� 0, g(1) �= 0

}
. (6)

Lemma 2.4. The following equalities hold

c := c1 = c2 = c3.

Proof. Taking into account 1 of Lemma 2.3 and the fact that for small ‖u‖ we have (see [23, Theorem 3.2, Step 1])∫
R3

3

2
|∇u|2 + 1

2
u2 + 3

4
φuu2 >

∫
R3

2p − 1

p + 1
|u|p+1,

the conclusion follows using the same arguments of [22, Proposition 3.11]. �
Remark 2.5. By point 3 of Lemma 2.3 and Remark 2.2, we argue that if u ∈M is such that I(u) = c, then (u, φu) is a ground
state solution of (1).

2.2.1. Proof of Theorem 1.1
Let (un)n ⊂M such that

lim
n

I(un) = c. (7)

We define the functional J : H1(R3) → R as:

J (u) =
∫
R3

p − 2

2p − 1
|∇u|2 + p − 1

2p − 1
u2 + p − 2

2(2p − 1)
φuu2.

Observe that for any u ∈M, by (ii) of Lemma 2.1 we have I(u) = J (u) � 0.

By (7), we deduce that (un)n is bounded in H1(R3), so there exists ū ∈ H1(R3) such that, up to a subsequence,

un ⇀ ū weakly in H1(
R

3),
un → ū in Ls(B), with B ⊂ R

3, bounded, and 1 � s < 6. (8)

To prove Theorem 1.1, we need some compactness on the sequence (un)n. To this end, we use a concentration-compactness
argument on the positive measures so defined: for every un ∈ H1(R3),

νn(Ω) =
∫
Ω

p − 2

2p − 1
|∇un|2 + p − 1

2p − 1
u2

n + p − 2

2(2p − 1)
φun u2

n. (9)

By (7) we have

νn
(
R

3) = J (un) → c

and then, by P.L. Lions [19], there are three possibilities:
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vanishing: for all r > 0

lim
n

sup
ξ∈R3

∫
Br (ξ)

dνn = 0;

dichotomy: there exist a constant c̃ ∈ (0, c), two sequences (ξn)n and (rn)n , with rn → +∞ and two nonnegative measures
ν1

n and ν2
n such that

0 � ν1
n + ν2

n � νn, ν1
n

(
R

3) → c̃, ν2
n

(
R

3) → c − c̃,

supp
(
ν1

n

) ⊂ Brn (ξn), supp
(
ν2

n

) ⊂ R
3 \ B2rn (ξn);

compactness: there exists a sequence (ξn)n in R
3 with the following property: for any δ > 0, there exists r = r(δ) > 0 such

that ∫
Br (ξn)

dνn � c − δ.

Arguing as in [27], we prove the following

Lemma 2.6. Compactness holds for the sequence of measures (νn)n, defined in (9).

Proof. Vanishing does not occur.
Suppose by contradiction, that for all r > 0

lim
n

sup
ξ∈R3

∫
Br (ξ)

dνn = 0.

In particular, we deduce that there exists r̄ > 0 such that

lim
n

sup
ξ∈R3

∫
Br̄ (ξ)

u2
n = 0.

By [20, Lemma I.1], we have that un → 0 in Ls(R3), for 2 < s < 6. As a consequence, since (un)n ⊂ M and by Lemma 2.1,
we get

0 � I(un) �
∫
R3

3

2
|∇un|2 + 1

2
u2

n + 1

4
φun u2

n − 1

p + 1
|un|p+1 = −1

2

∫
R3

φun u2
n + 2p − 2

p + 1

∫
R3

|un|p+1 → 0

which contradicts (7).

Dichotomy does not occur.
Suppose by contradiction that there exist a constant c̃ ∈ (0, c), two sequences (ξn)n and (rn)n , with rn → +∞ and two

nonnegative measures ν1
n and ν2

n such that

0 � ν1
n + ν2

n � νn, ν1
n

(
R

3) → c̃, ν2
n

(
R

3) → c − c̃,

supp
(
ν1

n

) ⊂ Brn (ξn), supp
(
ν2

n

) ⊂ R
3 \ B2rn (ξn).

Let ρn ∈ C1(R3) be such that ρn ≡ 1 in Brn (ξn), ρn ≡ 0 in R
3 \ B2rn (ξn), 0 � ρn � 1 and |∇ρn| � 2/rn .

We set

vn := ρnun, wn := (1 − ρn)un.

It is easy to see that

lim inf
n

J (vn) � c̃, lim inf
n

J (wn) � c − c̃.

Moreover, denoting Ωn := B2rn (ξn) \ Brn (ξn), we have

νn(Ωn) → 0, as n → ∞,

namely
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∫
Ωn

|∇un|2 + u2
n → 0, as n → ∞,

∫
Ωn

φun u2
n → 0, as n → ∞. (10)

By simple computations, we infer also∫
Ωn

|∇vn|2 + v2
n → 0, as n → ∞,

∫
Ωn

|∇wn|2 + w2
n → 0, as n → ∞.

Hence, we deduce that∫
R3

|∇un|2 + u2
n =

∫
R3

|∇vn|2 + v2
n +

∫
R3

|∇wn|2 + w2
n + on(1), (11)

∫
R3

|un|p+1 =
∫
R3

|vn|p+1 +
∫
R3

|wn|p+1 + on(1). (12)

Moreover, by point v of Lemma 2.1 and (10), we have∫
R3

φun u2
n =

∫
R3

φvn v2
n +

∫
R3

φwn w2
n + 2

∫
Brn

∫
Bc

2rn

u2
n(x)u2

n(y)

|x − y| dx dy + on(1) �
∫
R3

φvn v2
n +

∫
R3

φwn w2
n + on(1). (13)

Hence, by (11) and (13), we get

J (un) � J (vn) + J (wn) + on(1).

Then

c = lim
n

J (un) � lim inf
n

J (vn) + lim inf
n

J (wn) � c̃ + (c − c̃) = c,

hence

lim
n

J (vn) = c̃, lim
n

J (wn) = c − c̃. (14)

We recall the definition of the functional G : H1(R3) → R

G(u) =
∫
R3

3

2
|∇u|2 + 1

2
u2 + 3

4
φuu2 − 2p − 1

p + 1
|u|p+1

and that if u ∈M, then G(u) = 0. By (11)–(13), we have

0 = G(un) � G(vn) + G(wn) + on(1). (15)

By Lemma 2.3, for any n � 1, there exists θn > 0 such that (vn)θn ∈M, and then∫
R3

3

2
θ2

n |∇vn|2 + 1

2
v2

n + 3

4
θ2

n φvn v2
n =

∫
R3

2p − 1

p + 1
θ

2p−2
n |vn|p+1. (16)

We have to distinguish three cases.

Case 1: Up to a subsequence, G(vn) � 0.
By (16) we have∫

R3

3

2

(
θ

2p−2
n − θ2

n

)|∇vn|2 + 1

2

(
θ

2p−2
n − 1

)
v2

n + 3

4

(
θ

2p−2
n − θ2

n

)
φvn v2

n � 0,

which implies that θn � 1. Therefore, for all n � 1

c � I
(
(vn)θn

) = J
(
(vn)θn

)
� J (vn) → c̃ < c,

which is a contradiction.
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Case 2: Up to a subsequence, G(wn) � 0.
We can argue as in the previous case.

Case 3: Up to a subsequence, G(vn) > 0 and G(wn) > 0.
By (15), we infer that G(vn) = on(1) and G(wn) = on(1). If θn � 1 + on(1), we can repeat the arguments of Case 1.

Suppose that

lim
n

θn = θ0 > 1.

We have

on(1) = G(vn) =
∫
R3

3

2
|∇vn|2 + 1

2
v2

n + 3

4
φvn v2

n − 2p − 1

p + 1
|vn|p+1

=
∫
R3

3

2

(
1 − 1

θ
2p−4
n

)
|∇vn|2 + 1

2

(
1 − 1

θ
2p−2
n

)
v2

n +
∫
R3

3

4

(
1 − 1

θ
2p−4
n

)
φvn v2

n

and so vn → 0 in H1(R3), but we get a contradiction with (14).
Hence we conclude that dichotomy cannot occur. �
Now we are able to yield the following

Proof of Theorem 1.1. Let (un)n be a sequence in M such that (7) holds. We define the measures (νn)n as in (9); by
Lemma 2.6 there exists a sequence (ξn)n in R

N with the following property: for any δ > 0, there exists r = r(δ) > 0 such
that ∫

Bc
r (ξn)

p − 2

2p − 1
|∇un|2 + p − 1

2p − 1
u2

n + p − 2

2(2p − 1)
φun u2

n < δ. (17)

We define the new sequence of functions vn := un(· − ξn) ∈ H1(R3). It is easy to see that φvn = φun (· − ξn), and hence
vn ∈M. Moreover, by (17), we have that for any δ > 0, there exists r = r(δ) > 0 such that

‖vn‖H1(Bc
r )

< δ uniformly for n � 1. (18)

Since, by (8), (vn)n is bounded in H1(R3), certainly there exist a subsequence (likewise labelled) and v̄ ∈ H1(R3) such that

vn ⇀ v̄ weakly in H1(
R

3), (19)

vn → v̄ in Ls(B), with B ⊂ R
3, bounded, and 1 � s < 6. (20)

By (18), (19) and (20), we have that, taken s ∈ [2,6[, for any δ > 0 there exists r > 0 such that, for any n � 1 large enough

‖vn − v̄‖Ls(R3) � ‖vn − v̄‖Ls(Br ) + ‖vn − v̄‖Ls(Bc
r )

� δ + C
(‖vn‖H1(Bc

r )
+ ‖v̄‖H1(Bc

r )

)
� (1 + 2C)δ,

where C > 0 is the constant of the embedding H1(Bc
r ) ↪→ Ls(Bc

r ). We deduce that

vn → v̄ in Ls(
R

3), for any s ∈ [2,6[. (21)

Since φ is continuous from L12/5(R3) to D1,2(R3), from (21) we deduce that

φvn → φv̄ in D1,2(
R

3), as n → ∞,∫
R3

φvn v2
n →

∫
R3

φv̄ v̄2, as n → ∞. (22)

Since (vn)n is in M, by 2 of Lemma 2.3 (‖vn‖p+1)n is bounded below by a positive constant. As a consequence, (21) implies
that v̄ �= 0. Proceeding as in [23, Theorem 3.2, Step 4], by (21) and (22) we can show that vn → v̄ in H1(R3) so that v̄ ∈M
and I(v̄) = c. By Remark 2.5, we have that (v̄, φv̄) is a ground state solution of (1). �
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2.3. The non-constant potential case

In this section we suppose that the potential V satisfies (V1)–(V3) and that p ∈ ]3,5[.
In order to get our result, we will use a very standard device: we will look for a minimizer of the functional (4) restricted

to the Nehari manifold

N = {
u ∈ H1(

R
3) \ {0} ∣∣ G̃(u) = 0

}
,

where

G̃(u) :=
∫
R3

|∇u|2 + V (x)u2 + φuu2 − |u|p+1.

The following lemma describes some properties of the Nehari manifold N :

Lemma 2.7.

1. For any u �= 0 there exists a unique number t̄ > 0 such that t̄u ∈N and

I(t̄u) = max
t�0

I(tu);

2. there exists a positive constant C , such that for all u ∈N , ‖u‖p+1 � C ;
3. N is a C1 manifold.

Proof. Points 1 and 2 can be proved using standard arguments (see, for example, [22]).
3. Observe that for any u ∈ H1(R3) we have

G̃(u) = 4I(u) −
∫
R3

(|∇u|2 + V (x)u2) − p − 3

p + 1

∫
R3

|u|p+1,

and then, by point 2, for any u ∈N we have〈
G̃ ′(u), u

〉 = −2
∫
R3

(|∇u|2 + V (x)u2) − (p − 3)

∫
R3

|u|p+1 � −C < 0. �

The Nehari manifold N is a natural constraint for the functional I, therefore we are allowed to look for critical points
of I restricted to N .

In view of this, we assume the following definition

cV := inf
u∈N

I(u),

so that our goal is to find ū ∈ N such that I(ū) = cV , from which we would deduce that (ū, φū) is a ground state solution
of (1).

First we recall some preliminary lemmas which can be obtained by using the same arguments as in [22] (see also [2]).
As a consequence of Lemma 2.7, we are allowed to define the map t : H1(R3) \ {0} → R+ such that for any u ∈ H1(R3),

u �= 0:

I
(
t(u)u

) = max
t�0

I(tu).

Lemma 2.8. The following equalities hold

cV = inf
g∈Γ

max
t∈[0,1] I

(
g(t)

) = inf
u �=0

max
t�0

I(tu),

where Γ is the same set defined in (6).

Lemma 2.9. Let un ∈ H1(R3), n � 1, such that ‖un‖ � C > 0 and

max
t�0

I(tun) � cV + δn,

with δn → 0+. Then, there exist a sequence (yn)n ⊂ R
N and two positive numbers R,μ > 0 such that

lim inf
n

∫
B R (yn)

|un|2 dx > μ.
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Lemma 2.10. Let (un)n ⊂ H1(R3) such that ‖un‖ = 1 and

I
(
t(un)un

) = max
t�0

I(tun) → cV , as n → ∞.

Then the sequence (t(un))n ⊂ R+ possesses a bounded subsequence in R.

Proof. We have

C �
∫
R3

|∇un|2 + V (x)u2
n = t2

n

(
t p−3
n

∫
R3

|un|p+1 −
∫
R3

φun u2
n

)
.

The conclusion follows from (i) of Lemma 2.1 and Lemma 2.9. �
Lemma 2.11. Suppose that V , Vn ∈ L∞ , for all n � 1. If Vn → V in L∞(RN ), then cVn → cV .

Now define

I∞(u) := 1

2

∫
R3

|∇u|2 + V∞u2 + 1

4

∫
R3

φuu2 − 1

p + 1

∫
R3

|u|p+1,

c∞ := cV∞ .

As in [22], we have

Lemma 2.12. If V satisfies (V1)–(V3), we get cV < c∞ .

Proof. By Theorem 1.1, there exists (w, φw) ∈ H1(R3) ×D1,2(R3) a ground state solution of the problem{−�u + V∞u + φu = |u|p−1u in R
3,

−�φ = u2 in R
3.

Let t(w) > 0 be such that t(w)w ∈N . By (V2), we have

c∞ = I∞(w) � I∞
(
t(w)w

) = I
(
t(w)w

) +
∫

RN

(
V∞ − V (x)

)∣∣t(w)w
∣∣2

> cV ,

and then we conclude. �
2.3.1. Proof of Theorem 1.4

Let (un)n ⊂N such that

lim
n

I(un) = cV . (23)

We define the functional J : H1(R3) → R as:

J (u) =
(

1

2
− 1

p + 1

)∫
R3

|∇u|2 + V (x)u2 +
(

1

4
− 1

p + 1

)∫
R3

φuu2.

Observe that for any u ∈N , we have I(u) = J (u).

By (V3) and (23), we deduce that (un)n is bounded in H1(R3), so there exists ū ∈ H1(R3) such that, up to a subsequence,

un ⇀ ū weakly in H1(
R

3), (24)

un → ū in Ls(B), with B ⊂ R
3, bounded, and 1 � s < 6. (25)

To prove Theorem 1.4, we need some compactness on the sequence (un)n.

We denote by νn the measure

νn(Ω) =
(

1

2
− 1

p + 1

)∫
Ω

|∇un|2 + V (x)u2
n +

(
1

4
− 1

p + 1

)∫
Ω

φun u2
n.

Observe that, since there is no lower boundedness condition on the potential V , the measures νn may be not positive, and
then we are not allowed to use the Lions’ concentration arguments [19,20] on them. However, using a variant presented
in [9], in the following theorem we are able to show that the functions uk concentrate in the H1(R3)-norms.
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Theorem 2.13. For any δ > 0 there exists R̃ > 0 such that for any n � R̃∫
|x|>R̃

(|∇un|2 + |un|2) < δ.

Proof. By contradiction, suppose that there exist δ0 > 0 and a subsequence (uk)k such that for any k � 1∫
|x|>k

(|∇uk|2 + |uk|2
)
� δ0. (26)

We define

ρk(Ω) =
∫
Ω

|∇uk|2 + |uk|2 +
∫
Ω

φuk u2
k

and, for any r > 0, we set Ar := {x ∈ R
3 | r � |x| � r + 1}.

We claim that

for any μ > 0 and R > 0, there exists r > R such that ρk(Ar) < μ (27)

for infinitely many k. If not, then there should exist μ̂ > 0 and R̂ ∈ N such that, for any m � R̂ , there exists p(m) such that,
for any k � p(m),

ρk(Am) � μ̂.

We are allowed to take (p(m))m not decreasing, so that for every m � R̂ we could get uk such that, using (i) of Lemma 2.1,

C‖uk‖2(1 + ‖uk‖2) � ‖uk‖2 +
∫
R3

φuk u2
k � ρk(Bm \ B R̂) � (m − R̂)μ̂

contradicting the boundedness in H1(R3) of the sequence (un)n.

So, we assume that (27) holds. Taking into account Lemmas 2.11 and 2.12, consider μ > 0 such that

c < c(V∞ − μ) < c(V∞).

Using (V2), there exists Rμ ∈ N such that for almost every |x| � Rμ

V (x) � V∞ − μ > 0; (28)

we take r > Rμ such that, up to a subsequence,

ρk(Ar) < μ, for all k � 1. (29)

In particular, (28) and (29) imply∫
Ar

|∇uk|2 + V (x)u2
k = O (μ), for all k � 1, (30)

∫
Ar

φuk u2
k = O (μ), for all k � 1. (31)

Let χ ∈ C∞, such that χ = 1 in Br and χ = 0 in (Br+1)
c, 0 � χ � 1 and |∇χ | � 2. Set vk = χuk and wk = (1 − χ)uk.

By simple computations, by (28) and (30) we infer∫
Ar

|∇vk|2 + V (x)v2
k = O (μ),

∫
Ar

|vk|p+1 = O (μ),

∫
Ar

|∇wk|2 + V (x)w2
k = O (μ),

∫
Ar

|wk|p+1 = O (μ).

Hence, we deduce that∫
R3

|∇uk|2 + V (x)u2
k =

∫
R3

|∇vk|2 + V (x)v2
k +

∫
R3

|∇wk|2 + V (x)w2
k + O (μ), (32)

∫
3

|uk|p+1 =
∫

3

|vk|p+1 +
∫

3

|wk|p+1 + O (μ); (33)
R R R
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for large k � 1, by (26) and (28), we also deduce that there exists δ′ > 0 such that∫
R3

|∇wk|2 + V (x)|wk|2 � δ′ + O (μ). (34)

Moreover, arguing as in (13), we have∫
R3

φuk u2
k �

∫
R3

φvk v2
k +

∫
R3

φwk w2
k + O (μ). (35)

Hence, by (32) and (35), we get

J (uk) � J (vk) + J (wk) + O (μ),

and then, using (34) and (V3), we deduce

J (uk) − Cδ′ � J (vk) + O (μ), (36)

J (uk) � J (wk) + O (μ). (37)

We recall the definition of the functional G̃ : H1(R3) → R

G̃(u) =
∫
R3

|∇u|2 + V (x)u2 + φuu2 − |u|p+1

and that if u ∈N , then G̃(u) = 0. By (32), (33) and (35), we have

0 = G̃(uk) � G̃(vk) + G̃(wk) + O (μ). (38)

We have to distinguish three cases.

Case 1: Up to a subsequence, G̃(vk) � 0.
By Lemma 2.7, for any k � 1, there exists θk > 0 such that θk vk ∈N , and then∫

R3

|∇vk|2 + V (x)v2
k + θ2

k φvk v2
k =

∫
R3

θ
p−1
k |vk|p+1. (39)

By (39) we have(
θ

p−1
k − 1

) ∫
R3

|∇vk|2 + V (x)v2
k + (

θ
p−1
k − θ2

k

)∫
R3

φvk v2
k � 0,

and, by (V3), we deduce that θk � 1. Therefore, for all k � 1, by (V3) and (36),

cV � I(θk vk) = J (θk vk) � J (vk) � J (uk) − Cδ′ + O (μ) = cV − Cδ′ + ok(1) + O (μ),

which is a contradiction.

Case 2: Up to a subsequence, G̃(wk) � 0.
Let (ηk)k be such that, for any k � 1, ηk wk ∈ N . Arguing as in the previous case, we deduce that ηk � 1. Define

w̃k = ηk wk. Let (tk)k be such that, for any k � 1, tk w̃k ∈NV∞−μ.

By (28),∫
R3

|∇ w̃k|2 + (V∞ − μ)w̃2
k + φw̃k

w̃2
k �

∫
R3

|∇ w̃k|2 + V (x)w̃2
k + φw̃k

w̃2
k =

∫
R3

|w̃k|p+1,

and then tk � 1. By (37) and (V3), we conclude that

c(V∞ − μ) �
t2
k

2

∫
R3

|∇ w̃k|2 + (V∞ − μ)w̃2
k + t4

k

4

∫
R3

φw̃k
w̃2

k − t p+1
k

p + 1

∫
R3

|w̃k|p+1

�
t2
k

2

∫
R3

|∇ w̃k|2 + V (x)w̃2
k + t4

k

4

∫
R3

φw̃k
w̃2

k − t p+1
k

p + 1

∫
R3

|w̃k|p+1

=
(

t2
k

2
− t p+1

k

p + 1

)∫
R3

|∇ w̃k|2 + V (x)w̃2
k +

(
t4
k

4
− t p+1

k

p + 1

)∫
R3

φw̃k
w̃2

k

� J (w̃k) = J (ηk wk) � J (wk) � J (uk) + O (μ) = cV + ok(1) + O (μ),

but, letting μ go to zero and k go to ∞, by Lemma 2.11, this yields a contradiction with Lemma 2.12.
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Case 3: Up to a subsequence, G̃(vk) > 0 and G̃(wk) > 0.
By (38), we infer that G̃(vk) = O (μ) and G̃(wk) = O (μ). Let (ηk)k be such that ηk wk ∈ N . If ηk � 1 + O (μ), we can

repeat the arguments of Case 2. Suppose that

lim
k

ηk = η0 > 1.

We have

O (μ) = G̃(wk) =
∫
R3

|∇wk|2 + V (x)w2
k + φwk w2

k − |wk|p+1 =
(

1 − 1

η
p−1
k

)∫
R3

|∇wk|2 + V (x)w2
k +

(
1 − 1

η
p−3
k

)∫
R3

φwk w2
k

and so∫
R3

|∇wk|2 + V (x)w2
k = O (μ),

which contradicts (34). �
Proof of Theorem 1.4. By Theorem 2.13, for any δ > 0 there exists r > 0 such that

‖un‖H1(Bc
r )

< δ, uniformly for n � 1. (40)

Hence, arguing as in the constant potential case, we deduce that

un → ū in Ls(
R

3), for any s ∈ [2,6[. (41)

Moreover

φun → φū in D1,2(
R

3), as n → ∞,∫
R3

φun u2
n →

∫
R3

φū ū2, as n → ∞, (42)

and for any ψ ∈ C∞
0 (R3)∫

R3

φun unψ →
∫
R3

φū ūψ. (43)

By (23), we can suppose (see [28]) that (un)n is a Palais–Smale sequence for I|N and, as a consequence, it is easy to see
that (un)n is a Palais–Smale sequence for I . By (24), (41) and (43), we conclude that I ′(ū) = 0.

Since (un)n is in N , by 3 of Lemma 2.7 (‖un‖p+1)n is bounded below by a positive constant. As a consequence, (41) im-
plies that ū �= 0 and so ū ∈N .

Finally, by (23), (24), (41) and (42) and by (V2)–(V3) we get

cV � I(ū) � lim inf I(un) = cV ,

so we can conclude that (ū, φū) is a ground state solution of (1). �
3. The critical case

This section is devoted to the study of the critical case and in particular we will give the proofs of Theorems 1.6, 1.7
and 1.8.

3.1. The nonexistence result

Proof of Theorem 1.6. Arguing as in [5,15], we can prove that if (u, φ) ∈ H1(R3) × D1,2(R3) is a solution of the problem
(2), then (u, φ) satisfies the following Pohozaev identity:∫

R3

|∇u|2 + 3
∫
R3

V (x)u2 +
∫
R3

(∇V (x) | x
)
u2 + 5

2

∫
R3

φu2 =
∫
R3

u6. (44)

Multiplying the first equation of (2) by u and integrating, we have∫
3

|∇u|2 +
∫

3

V (x)u2 +
∫

3

φu2 =
∫

3

u6; (45)
R R R R
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on the other hand, multiplying the second equation of (2) by φ and integrating, we have∫
R3

|∇φ|2 =
∫
R3

φu2. (46)

By the combination of (44)–(46), we infer that∫
R3

[
2V (x) + (∇V (x) | x

)]
u2 + 3

2

∫
R3

|∇φ|2 = 0,

which, together with (V5)–(V6), implies that u = φ = 0. �
3.2. The existence results

As in Section 2.1, for every u ∈ L12/5(R3) we denote by φu ∈D1,2(R3) the unique solution of

−�φ = u2, in R
3.

It can be proved that (u, φ) ∈ H1(R3) × D1,2(R3) is a solution of (3) if and only if u ∈ H1(R3) is a critical point of the
functional I∗ : H1(R3) → R defined as

I∗(u) := 1

2

∫
R3

|∇u|2 + V (x)u2 + 1

4

∫
R3

φuu2 − 1

q + 1

∫
R3

|u|q+1 − 1

6

∫
R3

u6,

and φ = φu .
The Nehari manifold of the functional I∗ , defined as

N ∗ :=
{

u ∈ H1(
R

3) \ {0}
∣∣∣ ∫
R3

|∇u|2 + V (x)u2 + φuu2 − |u|q+1 − u6 = 0

}
,

satisfies the equivalent of Lemma 2.7 and so it is a natural constraint for I∗. We are looking for critical points of I∗ restricted
to N ∗.

Set

c∗
1 = inf

g∈Γ ∗ max
t∈[0,1] I∗

(
g(t)

)
, c∗

2 = inf
u �=0

max
t�0

I∗(tu), c∗
3 = inf

u∈N ∗ I∗(u),

where

Γ ∗ = {
g ∈ C

([0,1], H1(
R

3)) ∣∣ g(0) = 0, I∗
(

g(1)
)
� 0, g(1) �= 0

}
.

It is standard to prove that

Lemma 3.1. The following relations hold

c∗
V := c∗

1 = c∗
2 = c∗

3.

We denote by S the best constant for the Sobolev embedding D1,2(R3) ↪→ L6(R3), namely

S = inf
u∈D1,2\{0}

‖∇u‖2
2

‖u‖2
6

.

3.2.1. The constant potential case
In this section we suppose that V is a positive constant. For simplicity we assume V ≡ 1 and we denote c∗ = c∗

V .

Lemma 3.2. The following inequality holds

c∗ <
1

3
S

3
2 .

Proof. Consider the one parameter Talenti’s functions uε ∈D1,2(R3) defined by

uε := Cε
ε

1
4

2 1
2

,

(ε + |x| )
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where Cε > 0 is a normalizing constant (see [25]). Let ϕ be a smooth cut off function, namely ϕ ∈ C∞
0 (R3) and there exists

R > 0 such that ϕ|B R = 1, 0 � ϕ � 1 and suppϕ ⊂ B2R . Set wε := uεϕ and vε = wε/‖wε‖6. Using the estimates obtained
in [6] we get

‖∇vε‖2
2 = S + O

(
ε

1
2
)
, (47)

and, for any s ∈ [2,6[,

‖vε‖s
s =

⎧⎪⎨
⎪⎩

O (ε
s
4 ), if s ∈ [2,3[,

O (ε
3
4 |log(ε)|), if s = 3,

O (ε
6−s

4 ), if s ∈ ]3,6[.
(48)

For every ε > 0 let tε > 0 such that tε vε ∈N ∗. Obviously (tε)ε>0 is bounded below by a positive constant; otherwise there
should exist a sequence (εn)n such that limn tεn = 0 and then, by (47), Lemma 2.1 and (48),

0 < c∗ � lim
n

I∗(tεn vεn ) = 0.

Claim. For any ε > 0 small enough tε � (
∫

R3 |∇vε|2 + v2
ε)

1/4.

Let γε(t) := I∗(tvε) and set rε := (
∫

R3 |∇vε|2 + v2
ε)

1/4. By (47) and (48), (rε)ε>0 is bounded below by a positive constant.
Since tε vε ∈N ∗, certainly γ ′

ε(tε) = 0. On the other hand, by (i) of Lemma 2.1 and (48), for any ε small enough,

γ ′
ε(t) = tr4

ε − t5 + t3
∫
R3

φvε v2
ε − tq‖vε‖q+1

q+1 � tr4
ε − t5 + C ′t3‖vε‖4

12
5

− tq‖vε‖q+1
q+1 = tr4

ε − t5 + t3(C ′ O (ε) − tq−3 O
(
ε

5−q
4

))
,

where O (ε) and O (ε
5−q

4 ) are nonnegative functions. We deduce that, for any ε > 0 small enough, γ ′
ε(t) < 0 in ]rε,+∞[:

the claim follows as a consequence.
Now, since the function

t ∈ R+ �→ 1

2
t2r4

ε − 1

6
t6

is increasing in the interval [0, rε[, by (47) and (i) of Lemma 2.1 we have that

I∗(tε vε) = t2
ε

2

∫
R3

|∇vε|2 + v2
ε + t4

ε

4

∫
R3

φvε v2
ε − tq+1

ε

q + 1

∫
R3

|vε|q+1 − t6
ε

6

� 1

3

( ∫
R3

|∇vε|2 + v2
ε

) 3
2

+ C ′ t4
ε

4
‖vε‖4

12
5

− tq+1
ε

q + 1
‖vε‖q+1

q+1

= 1

3

(
S + O

(
ε

1
2
) +

∫
R3

v2
ε

) 3
2

+ C ′ t4
ε

4
‖vε‖4

12
5

− tq+1
ε

q + 1
‖vε‖q+1

q+1.

Using the inequality (a + b)δ � aδ + δ(a + b)δ−1b which holds for any δ � 1 and a,b � 0, by (48) and the previous chain of
inequalities we get

I∗(tε vε) � 1

3
S

3
2 + O

(
ε

1
2
) + C1(ε)O (ε) − C2(ε)O

(
ε

5−q
4

)
, (49)

where C1(ε) and C2(ε) are in an interval [α,β] with α > 0. Since q > 3, the conclusion follows from (49), for ε > 0 small
enough. �
Proof of Theorem 1.7. Let (un)n ⊂N ∗ such that

lim
n

I∗(un) = c∗. (50)

We easily deduce that (un)n is bounded in H1(R3), so there exists ū ∈ H1(R3) such that, up to a subsequence,

un ⇀ ū weakly in H1(
R

3),
un → ū in Ls(B), with B ⊂ R

3, bounded, and 1 � s < 6. (51)
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As in the first part of the paper, we use a concentration-compactness argument on the sequence of positive measures

μ∗
n(Ω) =

(
1

2
− 1

q + 1

)∫
Ω

|∇un|2 + u2
n +

(
1

4
− 1

q + 1

)∫
Ω

φun u2
n +

(
1

q + 1
− 1

6

)∫
Ω

u6
n.

We define the functional J∗ : H1(R3) → R as:

J∗(u) =
(

1

2
− 1

q + 1

)∫
R3

|∇u|2 + u2 +
(

1

4
− 1

q + 1

)∫
R3

φuu2 +
(

1

q + 1
− 1

6

)∫
R3

u6.

Vanishing does not occur.
Suppose by contradiction, that for all r > 0

lim
n

sup
ξ∈R3

∫
Br (ξ)

dμ∗
n = 0.

By [20] we deduce that un → 0 in Ls(R3) for any s ∈ ]2,6[.
By (i) of Lemma 2.1, since (un)n ⊂N ∗ , it follows that

lim
n

[ ∫
R3

|∇un|2 + u2
n −

∫
R3

u6
n

]
= 0.

By the boundedness of (un)n in H1(R3), we infer that there exists l > 0 such that, up to subsequence,

l := lim
n

∫
R3

|∇un|2 + u2
n = lim

n

∫
R3

u6
n.

We have

c∗ = lim
n

I∗(un) = 1

2
l − 1

6
l = 1

3
l (52)

and

S �
∫

R3 |∇un|2 + u2
n

(
∫

R3 u6
n)

1
3

→ l
2
3 . (53)

By (52) and (53) we get c∗ = 1
3 l � 1

3 S
3
2 , contradicting 2 of Lemma 3.2.

Dichotomy does not occur.
The proof uses similar argument as those in the proof of Theorem 1.1.
So the measures μ∗

n concentrate and, in particular, we have that there exists a sequence (ξn)n in R
N such that for any

δ > 0 there exists r = r(δ) > 0 such that(
1

2
− 1

q + 1

) ∫
Bc

r (ξn)

|∇un|2 + u2
n < δ. (54)

From now on, we only give a sketch of the remaining part of the proof, since it is similar to that of the subcritical case. We
define vn := un(· − ξn). It is easy to see that (vn)n ⊂N ∗ . From (54) we have that for any δ > 0 there exists r > 0 such that

‖vn‖H1(Bc
r )

< δ, uniformly for n � 1.

Hence we deduce

vn → v̄ in Ls(
R

3), for any s ∈ [2,6[; (55)

φvn → φv̄ in D1,2(
R

3);∫
R3

φvn v2
n →

∫
R3

φv̄ v̄2. (56)

Moreover, for any ψ ∈ C∞
0 (R3),∫

3

φvn vnψ →
∫

3

φv̄ v̄ψ,
R R
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and, by (55),∫
R3

v5
nψ →

∫
R3

v̄5ψ.

By (50), we can suppose (see [28]) that (vn)n is a Palais–Smale sequence for I∗||N ∗ , and, consequently, it is a Palais–Smale
sequence for I∗. By standard arguments, we infer that v̄ ∈N ∗ .

Finally, since (vn)n and v̄ are in N ∗ , we have that

I∗(v̄) = 1

3

∫
R3

|∇ v̄|2 + v̄2 + 1

12

∫
R3

φv̄ v̄2 +
(

1

6
− 1

q + 1

)∫
R3

|v̄|q+1,

I∗(vn) = 1

3

∫
R3

|∇vn|2 + v2
n + 1

12

∫
R3

φvn v2
n +

(
1

6
− 1

q + 1

)∫
R3

|vn|q+1,

so, by (50), (51), (55) and (56),

c∗ � I∗(v̄) � lim inf I∗(vn) = c∗.

We conclude that (v̄, φv̄) is a ground state solution of (3). �
3.2.2. The non-constant potential case

In this section we suppose that V satisfies hypotheses (V1)–(V3).
We define the functional I∗∞ : H1(R3) → R and the Nehari manifold N ∗∞ in the following way

I∗∞(u) := 1

2

∫
R3

|∇u|2 + V∞u2 + 1

4

∫
R3

φuu2 − 1

q + 1

∫
R3

|u|q+1 − 1

6

∫
R3

u6,

N ∗∞ :=
{

u ∈ H1(
R

3) \ {0}
∣∣∣ ∫
R3

|∇u|2 + V∞u2 + φuu2 − |u|q+1 − u6 = 0

}
.

We set

c∗∞ = inf
u∈N ∗∞

I∗∞(u).

Lemma 3.3. The following inequality holds

c∗
V <

1

3
S

3
2 .

Proof. By Theorem 1.7, there exists a ground state solution for (3) whenever V ≡ V∞; so, arguing as in Lemma 2.12, we
can show that c∗

V < c∗∞ . Therefore, the inequality follows by Lemma 3.2. �
Following [22], by Lemmas 3.2 and 3.3 and using a non-vanishing type argument as in the proof of Theorem 1.4, we can

show that the corresponding versions of Lemmas 2.9, 2.10 and 2.11 hold for the functional I∗ .

Proof of Theorem 1.8. Let (un)n ⊂N ∗ such that

lim
n

I∗(un) = c∗
V .

We easily deduce that (un)n is bounded in H1(R3), so there exists ū ∈ H1(R3) such that, up to a subsequence,

un ⇀ ū weakly in H1(
R

3).
Arguing as in Theorem 2.13, we can prove that

‖un‖H1(Bc
r )

< δ, uniformly for n � 1.

Hence we deduce

un → ū in Ls(
R

3), for any s ∈ [2,6[.
Then, arguing as in the proof of Theorem 1.7, we get the conclusion. �
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Note added in proof

After this paper was completed, the authors became aware of a related work by L. Zhao, F. Zhao, Positive solutions for
Schrödinger–Poisson equations with the critical exponent, Nonlinear Anal. (2008), doi:10.1016/j.na.2008.02.116, where the
critical case is treated in a similar context.
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