242 research outputs found
kHz Quasi-Periodic Oscillations in the low-mass X-ray binary 4U 0614+09
We report on a comprehensive analysis of the kilohertz (above 300 Hz)
quasi-periodic oscillations (kHz QPOs) detected from the neutron star low-mass
X-ray binary 4U0614+09 with the Rossi X-ray Timing Explorer (RXTE). With a much
larger data set than previously analyzed (all archival data from February 1996
up to October 2007), we first investigate the reality of the 1330 Hz QPO
reported by van Straaten et al. (2000). This QPO would be of particular
interest since it has the highest frequency reported for any source. A thorough
analysis of the same observation fails to confirm the detection. On the other
hand, over our extended data set, the highest QPO frequency we measure for the
upper kHz QPO is at about 1224 Hz; a value which is fully consistent with the
maximum values observed in similar systems. Second, we demonstrate that the
frequency dependence of the quality factor and amplitude of the lower and upper
kHz QPOs follow the systematic trends seen in similar systems (Barret et al.,
2006). In particular, 4U0614+09 shows a drop of the quality factor of the lower
kHz QPO above 700 Hz. If this is due to an approach to the innermost stable
circular orbit, it implies a neutron star mass of about 1.9 solar masses.
Finally, when analyzing the data over fixed durations, we have found a gap in
the frequency distribution of the upper QPO, associated with a local minimum of
its amplitude. A similar gap is not present in the distribution of the lower
QPO frequencies, suggesting some cautions when interpreting frequency ratio
distributions, based on the occurrence of the lower QPO only.Comment: 10 pages, 6 color figures, 2 tables, Accepted for publication in
MNRA
A novel isolator-based system promotes viability of human embryos during laboratory processing
In vitro fertilisation (IVF) and related technologies are arguably the most challenging of all cell culture applications. The starting material is a single cell from which one aims to produce an embryo capable of establishing a pregnancy eventually leading to a live birth. Laboratory processing during IVF treatment requires open manipulations of gametes and embryos, which typically involves exposure to ambient conditions. To reduce the risk of cellular stress, we have developed a totally enclosed system of interlinked isolator-based workstations designed to maintain oocytes and embryos in a physiological environment throughout the IVF process. Comparison of clinical and laboratory data before and after the introduction of the new system revealed that significantly more embryos developed to the blastocyst stage in the enclosed isolator-based system compared with conventional open-fronted laminar flow hoods. Moreover, blastocysts produced in the isolator-based system contained significantly more cells and their development was accelerated. Consistent with this, the introduction of the enclosed system was accompanied by a significant increase in the clinical pregnancy rate and in the proportion of embryos implanting following transfer to the uterus. The data indicate that protection from ambient conditions promotes improved development of human embryos. Importantly, we found that it was entirely feasible to conduct all IVF-related procedures in the isolator-based workstations
Inferring Gene-Phenotype Associations via Global Protein Complex Network Propagation
BACKGROUND: Phenotypically similar diseases have been found to be caused by functionally related genes, suggesting a modular organization of the genetic landscape of human diseases that mirrors the modularity observed in biological interaction networks. Protein complexes, as molecular machines that integrate multiple gene products to perform biological functions, express the underlying modular organization of protein-protein interaction networks. As such, protein complexes can be useful for interrogating the networks of phenome and interactome to elucidate gene-phenotype associations of diseases. METHODOLOGY/PRINCIPAL FINDINGS: We proposed a technique called RWPCN (Random Walker on Protein Complex Network) for predicting and prioritizing disease genes. The basis of RWPCN is a protein complex network constructed using existing human protein complexes and protein interaction network. To prioritize candidate disease genes for the query disease phenotypes, we compute the associations between the protein complexes and the query phenotypes in their respective protein complex and phenotype networks. We tested RWPCN on predicting gene-phenotype associations using leave-one-out cross-validation; our method was observed to outperform existing approaches. We also applied RWPCN to predict novel disease genes for two representative diseases, namely, Breast Cancer and Diabetes. CONCLUSIONS/SIGNIFICANCE: Guilt-by-association prediction and prioritization of disease genes can be enhanced by fully exploiting the underlying modular organizations of both the disease phenome and the protein interactome. Our RWPCN uses a novel protein complex network as a basis for interrogating the human phenome-interactome network. As the protein complex network can capture the underlying modularity in the biological interaction networks better than simple protein interaction networks, RWPCN was found to be able to detect and prioritize disease genes better than traditional approaches that used only protein-phenotype associations
Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps
Natural gas seeps contribute to global climate change by releasing substantial amounts of the potent greenhouse gas methane and other climate-active gases including ethane and propane to the atmosphere. However, methanotrophs, bacteria capable of utilising methane as the sole source of carbon and energy, play a significant role in reducing the emissions of methane from many environments. Methylocella-like facultative methanotrophs are a unique group of bacteria that grow on other components of natural gas (i.e. ethane and propane) in addition to methane but a little is known about the distribution and activity of Methylocella in the environment. The purposes of this study were to identify bacteria involved in cycling methane emitted from natural gas seeps and, most importantly, to investigate if Methylocella-like facultative methanotrophs were active utilisers of natural gas at seep sites
FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0
The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about [18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET/CT) and is provided to help the physician and physicist to assist to carrying out, interpret, and document quantitative FDG PET/CT examinations, but will concentrate on the optimisation of diagnostic quality and quantitative information
Diagnostic tools in Rhinology EAACI position paper
This EAACI Task Force document aims at providing the readers with a comprehensive and complete overview of the currently available tools for diagnosis of nasal and sino-nasal disease. We have tried to logically order the different important issues related to history taking, clinical examination and additional investigative tools for evaluation of the severity of sinonasal disease into a consensus document. A panel of European experts in the field of Rhinology has contributed to this consensus document on Diagnostic Tools in Rhinology
Toward Crystal Design in Organic Conductors and Superconductors
We have seen that many different types of intermolecular interactions in organic conducting cation radical salts. Hydrogen bonding between the donor molecules and the anions is weak but not negligible. The ionic Madelung energy is insufficient to completely intersperse anions and cations, thus the layers favored by the van der Waals interactions remain intact. The search for new conducting and superconducting salts has been mainly by trial-and-error methods, even though simple substitutions have been employed in order to obtain isostructural analogs of successful (e.g., superconducting) salts. However, even seemingly minor substitutions sometimes destroy the packing type, and different crystal structures result. Simulations with the aim at predicting crystal structures have not succeeded, mainly because the different interaction types are of comparable energy, and the delocalized and partial charges render the calculations of the ionic terms extremely unreliable. Clearly, the development of suitable crystal modeling techniques with predictive capabilities is one of the great needs of the field
- …