611 research outputs found

    Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris

    Get PDF
    The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane1, 2. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic3 and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur

    OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation

    Get PDF
    2-Oxoglutarate (2OG) and Fe(II)-dependent oxygenase domain-containing protein 1 (OGFOD1) is predicted to be a conserved 2OG oxygenase, the catalytic domain of which is related to hypoxia-inducible factor prolyl hydroxylases. OGFOD1 homologs in yeast are implicated in diverse cellular functions ranging from oxygen-dependent regulation of sterol response genes (Ofd1, Schizosaccharomyces pombe) to translation termination/mRNA polyadenylation (Tpa1p, Saccharomyces cerevisiae). However, neither the biochemical activity of OGFOD1 nor the identity of its substrate has been defined. Here we show that OGFOD1 is a prolyl hydroxylase that catalyzes the posttranslational hydroxylation of a highly conserved residue (Pro-62) in the small ribosomal protein S23 (RPS23). Unusually OGFOD1 retained a high affinity for, and forms a stable complex with, the hydroxylated RPS23 substrate. Knockdown or inactivation of OGFOD1 caused a cell type-dependent induction of stress granules, translational arrest, and growth impairment in a manner complemented by wild-type but not inactive OGFOD1. The work identifies a human prolyl hydroxylase with a role in translational regulation

    Unified description of light- and strange-baryon spectra

    Get PDF
    We present a chiral constituent quark model for light and strange baryons providing a unified description of their ground states and excitation spectra. The model relies on constituent quarks and Goldstone bosons arising as effective degrees of freedom of low-energy QCD from the spontaneous breaking of chiral symmetry. The spectra of the three-quark systems are obtained from a precise variational solution of the Schr\"odinger equation with a semirelativistic Hamiltonian. The theoretical predictions are found in close agreement with experiment.Comment: 9 pages, including 2 figure

    A photometric and spectroscopic study of the new dwarf spheroidal galaxy in Hercules

    Full text link
    Our aim is to provide as clean and as complete a sample as possible of red giant branch stars that are members of the Hercules dSph galaxy. With this sample we explore the velocity dispersion and the metallicity of the system. Stromgren photometry and multi-fibre spectroscopy are combined to provide information about the evolutionary state of the stars (via the Stromgren c_1 index) and their radial velocities. Based on this information we have selected a clean sample of red giant branch stars, and show that foreground contamination by Milky Way dwarf stars can greatly distort the results. Our final sample consists of 28 red giant branch stars in the Hercules dSph galaxy. Based on these stars we find a mean photometric metallicity of -2.35 dex which is consistent with previous studies. We find evidence for an abundance spread. Using those stars for which we have determined radial velocities we find a systemic velocity of 45.2 km/s with a dispersion of 3.72 km/s, this is lower than values found in the literature. Furthermore we identify the horizontal branch and estimate the mean magnitude of the horizontal branch of the Hercules dSph galaxy to be V_0=21.17, which corresponds to a distance of 147 kpc. We have shown that a proper cleaning of the sample results in a smaller value for the velocity dispersion of the system. This has implications for galaxy properties derived from such velocity dispersions.Comment: 24 pages, 28 figure

    Mitochondrial Glycerol-3-phosphate Acyltransferase-1 Is Essential in Liver for the Metabolism of Excess Acyl-CoAs

    Get PDF
    In vitro studies suggest that the mitochondrial glycerol-3-phosphate acyltransferase-1 (mtGPAT1) isoform catalyzes the initial and rate-controlling step in glycerolipid synthesis and aids in partitioning acyl-CoAs toward triacylglycerol synthesis and away from degradative pathways. To determine whether the absence of mtGPAT1 would increase oxidation of acyl-CoAs and restrict the development of hepatic steatosis, we fed wild type and mtGPAT1-/- mice a diet high in fat and sucrose (HH) for 4 months to induce the development of obesity and a fatty liver. Control mice were fed a diet low in fat and sucrose (LL). With the HH diet, absence of mtGPAT1 resulted in increased partitioning of acyl-CoAs toward oxidative pathways, demonstrated by 60% lower hepatic triacylglycerol content and 2-fold increases in plasma beta-hydroxybutyrate, acylcarnitines, and hepatic mRNA expression of mitochondrial HMG-CoA synthase. Despite the increase in fatty acid oxidation, liver acyl-CoA levels were 3-fold higher in the mtGPAT1-/- mice fed both diets. A lack of difference in CPT1 and FAS mRNA expression between genotypes suggested that the increased acyl-CoA content was not because of increased de novo synthesis, but instead, to an impaired ability to use long-chain acyl-CoAs derived from the diet, even when the dietary fat content was low. Hyperinsulinemia and reduced glucose tolerance on the HH diet was greater in the mtGPAT1-/- mice, which did not suppress the expression of the gluconeogenic genes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. This study demonstrates that mtGPAT1 is essential for normal acyl-CoA metabolism, and that the absence of hepatic mtGPAT1 results in the partitioning of fatty acids away from triacylglycerol synthesis and toward oxidation and ketogenesis

    A Secure Semi-Field System for the Study of Aedes aegypti

    Get PDF
    Novel vector control strategies require validation in the field before they can be widely accepted. Semi-field system (SFS) containment facilities are an intermediate step between laboratory and field trials that offer a safe, controlled environment that replicates field conditions. We developed a SFS laboratory and cage complex that simulates an urban house and yard, which is the primary habitat for Aedes aegypti, the mosquito vector of dengue in Cairns Australia. The SFS consists of a Quarantine Insectary Level-2 (QIC-2) laboratory, containing 3 constant temperature rooms, that is connected to two QIS-2 cages for housing released mosquitoes. Each cage contains the understory of a “Queenslander” timber house and associated yard. An automated air conditioning system keeps temperature and humidity to within 1°C and 5% RH of ambient conditions, respectively. Survival of released A. aegypti was high, especially for females. We are currently using the SFS to investigate the invasion of strains of Wolbachia within populations of A. aegypti
    corecore