502 research outputs found

    Радиационно-химический синтез перфторированной полимерной мембраны с сульфокислотными группами

    Get PDF
    В результаті радіаційно-індукованої прищепної сополімеризації з водних розчинів двох мономерів — акрилової кислоти і натрієвої солі стиролсульфонату — на полімерну плівку з фторованого пропілену-етилену синтезована протонобмінна мембрана з сульфокислотними групами. Розглянуті основні експериментальні параметри, що впливають на процес прищепної сополімеризації.Sulfonic acid proton exchange membranes based on a poly(tetrafluoroethylene-co-hexafluoropropylene) film are synthesized through the graft copolymerization of sodium styrenesulfonate and acrylic acid monomers from binary monomer aqueous solutions. The effects of the main polymerization parameters on the degree of grafting are studied

    On the Use of Covariate Supersets for Identification Conditions

    Get PDF
    The union of distinct covariate sets, or the superset, is often used in proofs for the identification or the statistical consistency of an estimator when multiple sources of bias are present. However, the use of a superset can obscure important nuances. Here, we provide two illustrative examples: one in the context of missing data on outcomes, and one in which the average causal effect is transported to another target population. As these examples demonstrate, the use of supersets may indicate a parameter is not identifiable when the parameter is indeed identified. Furthermore, a series of exchangeability conditions may lead to successively weaker conditions. Future work on approaches to address multiple biases can avoid these pitfalls by considering the more general case of nonoverlapping covariate sets

    Dynamical control of correlated states in a square quantum dot

    Get PDF
    In the limit of low particle density, electrons confined to a quantum dot form strongly correlated states termed Wigner molecules, in which the Coulomb interaction causes the electrons to become highly localized in space. By using an effective model of Hubbard-type to describe these states, we investigate how an oscillatory electric field can drive the dynamics of a two-electron Wigner molecule held in a square quantum dot. We find that, for certain combinations of frequency and strength of the applied field, the tunneling between various charge configurations can be strongly quenched, and we relate this phenomenon to the presence of anti-crossings in the Floquet quasi-energy spectrum. We further obtain simple analytic expressions for the location of these anti-crossings, which allows the effective parameters for a given quantum dot to be directly measured in experiment, and suggests the exciting possibility of using ac-fields to control the time evolution of entangled states in mesoscopic devices.Comment: Replaced with version to be published in Phys. Rev.

    When Does Differential Outcome Misclassification Matter for Estimating Prevalence?

    Get PDF
    Background: When accounting for misclassification, investigators make assumptions about whether misclassification is "differential" or "nondifferential." Most guidance on differential misclassification considers settings where outcome misclassification varies across levels of exposure, or vice versa. Here, we examine when covariate-differential misclassification must be considered when estimating overall outcome prevalence. Methods: We generated datasets with outcome misclassification under five data generating mechanisms. In each, we estimated prevalence using estimators that (a) ignored misclassification, (b) assumed misclassification was nondifferential, and (c) allowed misclassification to vary across levels of a covariate. We compared bias and precision in estimated prevalence in the study sample and an external target population using different sources of validation data to account for misclassification. We illustrated use of each approach to estimate HIV prevalence using self-reported HIV status among people in East Africa cross-border areas. Results: The estimator that allowed misclassification to vary across levels of the covariate produced results with little bias for both populations in all scenarios but had higher variability when the validation study contained sparse strata. Estimators that assumed nondifferential misclassification produced results with little bias when the covariate distribution in the validation data matched the covariate distribution in the target population; otherwise estimates assuming nondifferential misclassification were biased. Conclusions: If validation data are a simple random sample from the target population, assuming nondifferential outcome misclassification will yield prevalence estimates with little bias regardless of whether misclassification varies across covariates. Otherwise, obtaining valid prevalence estimates requires incorporating covariates into the estimators used to account for misclassification

    Strong-field terahertz-optical mixing in excitons

    Get PDF
    Driving a double-quantum-well excitonic intersubband resonance with a terahertz (THz) electric field of frequency \omega_{THz} generated terahertz optical sidebands \omega=\omega_{THz}+\omega_{NIR} on a weak NIR probe. At high THz intensities, the intersubband dipole energy which coupled two excitons was comparable to the THz photon energy. In this strong-field regime the sideband intensity displayed a non-monotonic dependence on the THz field strength. The oscillating refractive index which gives rise to the sidebands may be understood by the formation of Floquet states, which oscillate with the same periodicity as the driving THz field.Comment: 4 pages, 6 figure

    Spin polarization and magneto-luminescence of confined electron-hole systems

    Get PDF
    A BCS-like variational wave-function, which is exact in the infinite field limit, is used to study the interplay among Zeeman energies, lateral confinement and particle correlations induced by the Coulomb interactions in strongly pumped neutral quantum dots. Band mixing effects are partially incorporated by means of field-dependent masses and g-factors. The spin polarization and the magneto-luminescence are computed as functions of the number of electron-hole pairs present in the dot and the applied magnetic field.Comment: To appear in Phys. Rev.

    Missing Outcome Data in Epidemiologic Studies

    Get PDF
    Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized trial that was not subject to missing data and induce missing data to illustrate 4 scenarios in which outcomes are 1) missing completely at random, 2) missing at random with positivity, 3) missing at random without positivity, and 4) missing not at random. We demonstrate that accounting for missing data is generally a better strategy than ignoring missing data, which unfortunately remains a standard approach in epidemiology

    Illustration of 2 Fusion Designs and Estimators

    Get PDF
    "Fusion" study designs combine data from different sources to answer questions that could not be answered (as well) by subsets of the data. Studies that augment main study data with validation data, as in measurement-error correction studies or generalizability studies, are examples of fusion designs. Fusion estimators, here solutions to stacked estimating functions, produce consistent answers to identified research questions using data from fusion designs. In this paper, we describe a pair of examples of fusion designs and estimators, one where we generalize a proportion to a target population and one where we correct measurement error in a proportion. For each case, we present an example motivated by human immunodeficiency virus research and summarize results from simulation studies. Simulations demonstrate that the fusion estimators provide approximately unbiased results with appropriate 95% confidence interval coverage. Fusion estimators can be used to appropriately combine data in answering important questions that benefit from multiple sources of information

    Comparing results from multiple imputation and dynamic marginal structural models for estimating when to start antiretroviral therapy

    Get PDF
    Optimal timing of initiating antiretroviral therapy has been a controversial topic in HIV research. Two highly publicized studies applied different analytical approaches, a dynamic marginal structural model and a multiple imputation method, to different observational databases and came up with different conclusions. Discrepancies between the two studies' results could be due to differences between patient populations, fundamental differences between statistical methods, or differences between implementation details. For example, the two studies adjusted for different covariates, compared different thresholds, and had different criteria for qualifying measurements. If both analytical approaches were applied to the same cohort holding technical details constant, would their results be similar? In this study, we applied both statistical approaches using observational data from 12,708 HIV‐infected persons throughout the USA. We held technical details constant between the two methods and then repeated analyses varying technical details to understand what impact they had on findings. We also present results applying both approaches to simulated data. Results were similar, although not identical, when technical details were held constant between the two statistical methods. Confidence intervals for the dynamic marginal structural model tended to be wider than those from the imputation approach, although this may have been due in part to additional external data used in the imputation analysis. We also consider differences in the estimands, required data, and assumptions of the two statistical methods. Our study provides insights into assessing optimal dynamic treatment regimes in the context of starting antiretroviral therapy and in more general settings

    Spin Exciton in quantum dot with spin orbit coupling in high magnetic field

    Full text link
    Coulomb interactions of few (N N ) electrons confined in a disk shaped quantum dot, with a large magnetic field B=BB=B^* applied in the z-direction (orthogonal to the dot), produce a fully spin polarized ground state. We numerically study the splitting of the levels corresponding to the multiplet of total spin S=N/2S=N/2 (each labeled by a different total angular momentum Jz J_z ) in presence of an electric field parallel to B B , coupled to S S by a Rashba term. We find that the first excited state is a spin exciton with a reversed spin at the origin. This is reminiscent of the Quantum Hall Ferromagnet at filling one which has the skyrmion-like state as its first excited state. The spin exciton level can be tuned with the electric field and infrared radiation can provide energy and angular momentum to excite it.Comment: 9 pages, 9 figures. submitted to Phys.Rev.
    corecore