
Abstract: The union of distinct covariate sets, or the superset, is often 
used in proofs for the identification or the statistical consistency of an 
estimator when multiple sources of bias are present. However, the use 
of a superset can obscure important nuances. Here, we provide two 
illustrative examples: one in the context of missing data on outcomes, 
and one in which the average causal effect is transported to another 
target population. As these examples demonstrate, the use of super-
sets may indicate a parameter is not identifiable when the parameter 
is indeed identified. Furthermore, a series of exchangeability condi-
tions may lead to successively weaker conditions. Future work on 
approaches to address multiple biases can avoid these pitfalls by con-
sidering the more general case of nonoverlapping covariate sets.
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Point identification of parameters, like the average causal 
effect (ACE), relies on several assumptions. In many cases, 

exchangeability and positivity are assumed. Exchangeability 
is a statement about when an action (e.g., treatment and 
exposure, etc.) and potential outcomes are independent,1 and 
positivity is a statement about the opportunity for different 
actions.2 When there are multiple sources of bias, a series 
of identification assumptions are warranted for the observed 
data to stand-in for unobserved data. A union of the covariate 
sets, or the superset, that satisfies the separate identification 
assumptions is often used for identification or statistical con-
sistency results. Perhaps due to its convenience and notational 
simplicity, supersets have been commonly used.3–24 Here, we 

provide two illustrative examples where important nuances 
are obscured by such supersets.

Example 1: Average Causal Effect with Missing 
Data

For the first example, we are interested in the ACE with 
missing data for the outcome (Figure). Using capital letters 
to denote random variables, lower-case letters for constants, 
and lower-case Greek letters for parameters; the parameter of 
interest is

θ = [ ] − [ ]= =E Y E Ya a1 0

where E ⋅[]  represents the expected value function
and Y a  is the potential outcome for Y  under treatment a .
Further, let Ai ∈{ }0 1,  indicate the treatment received, Z Xi i,

represent observed variables, U U1 2,  indicate unobserved 
variables, and RY = 1  indicate that Y  is missing and RY = 0

otherwise. For example, we could be interested in the effect 
of selective serotonin reuptake inhibitors ( A ) on incidence 
lung cancer over the following 10 years (Y ), where smoking 
status (W ) and coronary artery disease ( X ) were measured 
but depression (U1 ) and occupational exposures (U2

) were
not collected.25 Furthermore, those diagnosed with coronary 
artery disease often later switched to a specialty hospital, and 
thus lung cancer diagnoses were unavailable (i.e., RY = 1).
The identification strategy used here relies on two sets of 
sufficient identification assumptions. Equations 1–3 indicate 
when the treated are expected to appropriately represent the 
untreated, and vice versa.
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FIGURE.  Single world intervention graph for confounding 
and missing data on Y . Let A  indicate the treatment of inter-
est, Y  indicate the outcome, and R  indicate missing data for 
the outcome. Note U1  and U2  are both unobserved.
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where Equation 1 is conditional exchangeability, 
Equation 2 is positivity, and Equation 3 is causal consistency.1 
The second set of assumptions relate to when the observations 
with nonmissing outcomes can stand-in for those with missing 
outcomes.
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where Equation 4 is conditional exchangeability of 
missingness and Equation 5 is positivity. For ease of presenta-
tion, we assume discrete Z X, , but analogous conditions exist 
for continuous variables.

As depicted in Figure A, independence of A  and Y a  
requires conditioning on Z{ }  and independence of RY  and
Y a  requires conditioning on X{ } . However, X  is a collider
on the A U X U Y a← → ← →1 2

 path.26,27 Since neither U1  
or U2

are observed, a superset that blocks all backdoor paths
does not exist, and it appears that θ  is not identified given 
the superset Z X,{ } . Yet, consider the following identification
proof without reliance on a superset:
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where the first and third steps follow from the law of 
total probability, the second follows from Equations 1–2, the 
fourth follows from Equations 4–5, and the final follows from 
Equation 3. Therefore, θ  is identified and can be estimated 

with g-computation. Alternatively, E Y[ ]a can be re-expressed 
as

E Y
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which is amenable to estimation using inverse prob-
ability weighting (eAppendix 1; http://links.lww.com/EDE/
B921), with independently constructed weights.

Example 2: Transport of the Average Causal 
Effect

As a second example, consider the following transport-
ability problem where we are interested in estimating the 
ACE for a target population using information from a second 
population:

ψ = =[ ] − =[ ]= =E Y s E Y sa a1 01 1| |

where s = 1  denotes membership in the target popula-
tion and s = 2  denotes membership in the second population. 
Further, let Wi , Vi  represent two sets of covariates for par-
ticipant i . Here, we consider the case where W  and V  are 
nonoverlapping (see eAppendix 2; http://links.lww.com/EDE/
B921 for partial overlap). In a random sample of the target 
population, W V,  were measured but information on A  or Y  
is unavailable. Instead, data on both A  and Y  are available for 
s = 2 . Therefore, the primary challenge is to demonstrate the 
identification conditions for ψ  using the observed data [i.e., 
s = 2 : Y AW V, , ,( )  and s = 1 : W V,( ) ].

Again, the identification strategy relies on two sets of 
identification assumptions. The first set indicates when the 
sample is expected to appropriately represent the target pop-
ulation. The identification assumptions for sampling can be 
written as:
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where Equation 6 is conditional exchangeability and 
Equation 7 is positivity for sampling.10 The second set of 
assumptions regard identification of the ACE in the second 
population:
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where Equation 8 is conditional exchangeability, 
Equation 9 is positivity, and Equation 10 is causal consistency.

To demonstrate that these assumptions are suf-
ficient to identify ψ , we may define Q  as the superset  
(i.e., Q W V= ∪ ) and replace both W and V with Q  in
Equations 6–10, provided this does not results in collider 
stratification bias.27 Therefore,
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where the first step follows from the law of total prob-
ability over Q , the second from Equations 1–2, the third from 
Equations 3–4, and the fourth from Equation 5. One may note 
that the conditions in this proof are stronger than necessary 
and restate that only V  is necessary for Equations 6–7 and 
only W  for Equations 8–10. However, ψ  is identified under
an even weaker set of assumptions. Reconsider the proof with-
out the superset:
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where the first and third steps follow from the law of 
total probability, the second follows from Equations 6–7, the 
fourth follows from Equations 8–9, and the final step follows 
from Equation 10 (see eAppendix 3; http://links.lww.com/
EDE/B921 for the weighted estimator). Therefore, Equations 
8–9 can be weakened to:
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These weakened conditions clarify that identification in 
s = 2  is only necessary for strata of v  seen in s = 1 .

For further intuition, consider the population-level infor-
mation displayed in the Table. Among the second population, 
s = 2 , no individuals with covariate values of V W= =0 0,
receive the treatment ( A = 1), a violation of Equation 9. This
information indicates that ψ  is not identifiable. However, the
target population only consists of individuals with V = 1 or 
V = 2 . As Equation 9* indicates, positivity for treatment in 
the second population is only necessary for strata of V  in the 
target population. Put another way, the identifiability in the 
V = 0  strata in the s = 2  population is irrelevant to the iden-
tification of ψ . As indicated by Equations 8* and 9*, ψ  is 
indeed identifiable.

A remaining point is whether Equations 6–7 could have 
been weakened instead of Equations 8–9. Here, the answer 
is no. To move from the parameter to the observed data, the 
sampling identification conditions ought to be applied first 
because the treatment assumptions correspond to s = 2  for 
which information on A Y,  is available.

DISCUSSION
We provided two illustrative examples where the use 

of covariate supersets obscures identification results or the 
related identification assumptions. Our examples indicate 
three key messages. First, relying on supersets may simplify 
the presentation of identification or statistical consistency 
proofs, but identifiable parameters may not appear to be iden-
tifiable when supersets are applied. Second, identification 
assumptions tailored to specific covariate sets may indicate 
weaker conditions than either the superset or separately con-
sidering each source of bias. Last, the order in which sets of 

TABLE.  Distribution of Variables in the Target and Second 
Populations

s = 1

Overall

s = 0

Overall A W= =1 1, A W= =1 0, A W= =0 1, A W= =0 0,

V = 0  
0 0.45 0.05 0 0.10 0.30

V = 1  
0.50 0.35 0.08 0.05 0.07 0.15

V = 2  
0.50 0.20 0.05 0.08 0.02 0.05

Let s = 1  indicate the target population and s = 2  indicate the second
population. For s = 1 , information on A  (received treatment) and Y  (outcome) is
unavailable. W  is a covariate that provides exchangeability of the potential outcomes 
and treatment among s = 2 . V  is a covariate that provides exchangeability of the
potential outcomes and sampling of populations.
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identification conditions are applied may matter for weakened 
conditions,28 with the context guiding their ordering.

Therefore, we recommend that those proposing new 
methods or conducting simulation studies not rely on super-
sets of covariates, as this can easily lead to confusion. Instead, 
methodological work that uses nonoverlapping covariate sets 
allows for epidemiologists to apply those methods regardless 
of the specific background knowledge. A prominent example 
of confusion attributable to supersets is methodological work 
arguing whether or not survey sampling weights should be 
included in the propensity score model in the survey sampling 
literature.8,21,22 In a recent online seminar, Daniel McCaffrey29 
clarified when sampling weights should be included by consid-
ering disjoint covariate sets. Another example showcasing the 
clarifying role of non-overlapping sets is Ross et al.’s recent 
discussion on the construction of inverse probability weights to 
address confounding and missing data.30 When lacking formal 
proofs or empirical studies that avoid supersets, researchers 
can attempt to use graph-based algorithms,31–33 or may need to 
work through the proofs themselves.
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