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“Fusion” study designs combine data from different sources to answer questions that could not be answered (as
well) by subsets of the data. Studies that augment main study data with validation data, as in measurement-error
correction studies or generalizability studies, are examples of fusion designs. Fusion estimators, here solutions to
stacked estimating functions, produce consistent answers to identified research questions using data from fusion
designs. In this paper, we describe a pair of examples of fusion designs and estimators, one where we generalize
a proportion to a target population and one where we correct measurement error in a proportion. For each
case, we present an example motivated by human immunodeficiency virus research and summarize results from
simulation studies. Simulations demonstrate that the fusion estimators provide approximately unbiased results
with appropriate 95% confidence interval coverage. Fusion estimators can be used to appropriately combine data
in answering important questions that benefit from multiple sources of information.

accuracy; bias; generalizability; measurement error; random error; study design

Abbreviations: AIDS, acquired immunodeficiency syndrome; CI, confidence interval; HIV, human immunodeficiency virus; SE,
standard error.

Editor’s note: An invited commentary on this article will
appear in a future issue.

A “fusion” study design combines data from multiple
sources to answer a question that could not be answered
(as well) by data from subsets of these sources (1). For a
question to be answered, the parameter which addresses
the question must be (partially or point) identified given
the data observed under the study design. Fusion designs
may include data on participants from different studies or
on participants from different stages of a single (nested)
study. Examples of the former type include measurement-
error correction studies which use external validation data,
generalizability studies which use auxiliary information on
the target population (2), and studies of bridged treatment
effects which rely on a set of treatment comparison studies
(3). Examples of the latter type include measurement-error
correction studies which use internal validation data, gen-
eralizability studies where trials are nested in cohorts (4),

and classical 2-stage studies which collect costly covariate
information on a subset of participants (5, 6). Here we focus
on examples of the former type with external auxiliary data.

A fusion estimator produces an answer to a question using
data from a fusion study. Here, we consider fusion estimators
that are solutions to stacked estimating functions (7, 8). It is
desirable that such estimators converge in probability to the
parameter value as the sample size increases (i.e., consis-
tent), converge in distribution to a Gaussian random variable
(i.e., asymptotically normal), and are precise enough to be
useful in practice, even if not optimally efficient (8). In the
analysis of fusion designs, it is important to appropriately
propagate the uncertainty from the various data sources
when estimating the parameter(s) of interest. Some widely
used approaches to quantifying uncertainty associated with
parameter estimates from fusion designs require intense
computation. For example, one might use the bootstrap to
estimate the random error through repeated sampling from
the set of data sources (9) or employ a Bayesian approach
using Markov chain Monte Carlo sampling (10).



Our motivation here is 2-fold. First, framing studies with
multiple data sources as fusion designs helps to connect
apparently disparate approaches and clarify conditions suf-
ficient to identify parameters of interest in diverse settings.
Second, using well-established estimating function-based
approaches to obtain parameter estimates for fusion designs
is highly flexible and more computationally efficient than
some competing approaches, while still appropriately prop-
agating random error. The present work introduces epidemi-
ologists to some key ideas in fusion designs and a convenient
approach to estimation. Below we describe a pair of minimal
nontrivial examples of fusion designs and estimators. First,
an estimate of the proportion is transported using auxiliary
data from a target population. Second, an estimate of the
proportion based on misclassified data is corrected using
auxiliary validation data. For each example, the methods
are illustrated with data from human immunodeficiency
virus (HIV) research and simulation studies are conducted
to explore the finite sample properties of the estimators
illustrated.

METHODS

Identification conditions

Here we show how to correct for biases in epidemiologic
studies that leverage multiple sources of data. Below, in case
1, we generalize a proportion to a target population, and
in case 2 we correct measurement error in a proportion.
In case 1, we will have a sample, indicated as R = 0,
which includes only the variable W (playing the role of the
population-characterizing covariate). We will also have a
sample, indicated as R = 1, which includes variables W
and Y . The stacked data Xi can be written as {Wi, YiRi, Ri}
for i = 1, . . . , N. In case 2, we will again have a sample,
indicated as R = 0, which only includes variable W (now
playing the role of mismeasured Y). We will also have a
sample, indicated as R = 1, which includes variables W and
Y . In case 2, the R = 1 sample can be split into subsamples
defined by Y = 1 and Y = 0, as done below. The stacked
data Xi can again be written as {Wi, YiRi, Ri}. The target
parameter for both case 1 and case 2 is P(Y = y|R = 0).

In case 1, the 2 identification conditions are P(Y = y|W =
w, R = 0) = P(Y = y|W = w, R = 1) and P(W = w|R =
1) > 0 for all w, where P(W = w|R = 0) > 0, assuming
for ease of notation that W is discrete (an analogous con-
dition holds when W is continuous). The first identification
assumption is a conditional exchangeability statement, such
that the outcome Y is missing at random given W. We
must select W on the basis of expert knowledge to control
selection bias. The second identification assumption is a
related positivity statement.

For case 1, we reexpress the parameter of interest by

P(Y = y|R = 0)

=
∑

w

P(Y = y|W = w, R = 0) P(W = w|R = 0) . (1)

The first term on the right side of equation 1 is generally not
identifiable without assumptions, because Y is not observed
when R = 0. However, under the above identification
assumptions, this term can be replaced by P(Y = y|W = w,
R = 1), such that

P(Y = y|R = 0)

=
∑

w

P(Y = y|W = w, R = 1) P(W = w|R = 0) , (2)

where the right side of equation 2 is now comprised solely of
observed quantities. Specifically, P(Y = y|W = w, R = 1)
is identified from the R = 1 sample, and P(W = w|R = 0)
is identified from the R = 0 sample because in the R = 0
sample we observe W and these data are assumed to be a
random sample from the target population.

In case 2, we reexpress the parameter of interest as

P(Y = 1|R = 0)

= P(W = 1|R = 0) + P(W = 0|Y = 0, R = 0) − 1

P(W =1|Y =1, R=0)+P(W = 0|Y = 0, R = 0)−1
.

(3)

The R = 0 sample provides a random sample of data on W
from the target population to identify P(W = 1|R = 0), and
the R = 1 sample identifies the other probabilities on the
right side of equation 3 under the exchangeability condition
P(W = w|Y = y, R = 1) = P(W = w|Y = y, R = 0). These
same identification conditions may similarly be adapted to
other cases of fusion designs.

M-estimators

Here we provide a brief review of M-estimation. For more
detail, see Godambe (7) and Stefanski and Boos (8). Many
epidemiologic analyses entail estimating a vector parameter
θ = (θ1, . . . , θp) using data from N independent individuals
X1, . . . , XN . Often the estimator θ̂ of θ can be expressed
as the solution to an estimating equation

∑N
i=1g(Xi; θ) =

0, where g is a (column) vector of real-valued functions
of the data Xi and the parameters θ. For example, if θ

were the expected value of X, and θ̂ was the sample mean
N−1∑N

i=1Xi, then g(Xi; θ) would equal Xi − θ. Maximum
likelihood estimators are M-estimators, where the score
equations (i.e., partial derivatives of the log likelihood) are
used for g(Xi, θ) (the “M” in “M-estimator” reflects the fact
that many estimators maximize some objective function, or
equivalently, equal a root of the derivative of that function).
If the estimating function g(X; θ) is unbiased (has expecta-
tion 0 at the true value of θ) and suitable regularity conditions
hold (see Boos and Stefanski (11), chapter 7), then as the
sample size N increases, the M-estimator θ̂ will be consistent
and asymptotically normal (8). The asymptotic variance of
θ̂ can be estimated by the empirical sandwich estimator

�
θ̂

= BN(θ̂)
−1

MN(θ̂)BN(θ̂)
−T

. The bread of the sandwich



estimator is BN(θ̂) = N−1∑N
i=1g′(Xi; θ̂), where g′(Xi; θ) =

−
[

∂g(Xi;θ)
∂θ

]
is the matrix of derivatives of the estimating

function with respect to the parameters. These derivatives
may be derived analytically or approximated numerically.

The meat is MN(θ̂) = N−1 N
i=1g(Xi; θ̂)g(Xi; θ̂)

T
—that is,

θ̂

asymptotically normal estimator of the mean of Y can be
obtained by solving

∑N
i=1g(Xi; θ) = 0, which has the

closed-form solution θ̂ = ∑N
i=1RiYiπi/

∑N
i=1Riπi where

πi = π(Wi).
In practice, the odds weights are typically not known and

instead are estimated. To estimate the weights, assume the
logistic model P(R = 1|W; β) = [exp(−βW∗) + 1]−1,
where W∗ = (1, W)T and the row vector parameter β has
the same dimension as W∗T . Let the mean of Y in the target
population now be denoted as μ and let θ = (μ, β). A
consistent estimator θ̂ can be obtained by finding the value
of θ that solves

∑N
i=1gθ(Xi; θ) = 0, where

gθ (X; θ) =
(

gμ,β (Y , R, W; μ, β)
gβ (R, W; β)

)

=
(

R [Y − μ] π
[R − P (R = 1|W; β)] W∗

)
;

here, π = π(W; β) = P(R = 0|W; β)/P(R = 1|W; β).
In general, the estimating equation solution θ̂ may be
found numerically through a root-finding algorithm, such
as Newton’s method (13). The variance-covariance matrix
of θ̂ can be estimated by �

θ̂
/N, where the empirical

sandwich estimator �
θ̂

is computed on the basis of the
vector estimating function gθ(X; θ). See Web Appendix
3 for additional details on the sandwich estimator for
this case. For this problem, θ̂ can also be obtained by
finding the maximum likelihood estimates of the logistic
sampling model parameters, say β̂, and estimating μ via
the closed-form estimator in the preceding paragraph, with
πi = π(Wi; β̂).

Example

We wish to learn the 1-year risk of acquired immuno-
deficiency syndrome (AIDS) or death among HIV-positive
adults placed on an HIV treatment plan in the United States
in the late 1990s. In this main study, we have a sample of
n = 579 HIV-positive adults randomized to this treatment
plan, as described in the 2-drug arm of Hammer et al.’s (14)
Table 2. In this study, 63 (11%) of the 579 patients developed
AIDS or died during the 1-year follow-up period. Among
these participants, 94 (16%) of the 579 were female, and 388
(67%) were aged ≥35 years.

Auxiliary data come from a Centers for Disease Control
and Prevention census of the target population conducted in
2006, including the characteristics sex and age group (see
Cole and Stuart (2)). Of the 121,617 diagnosed HIV cases,
20,430 (17%) were female and 63,689 (52%) were aged
≥35 years.

To simplify presentation, we treat the 31 (5%) patients in
the main sample of 579 who were lost to follow-up as if they
had no events. To amplify the difference between the sample
estimate and the transported estimate for demonstration
purposes, we reclassify 14 of the people with outcomes in
the main sample who were aged 18–34 years as outcomes

the sample average of the 

∑
outer product of the estimat-ing function. The asymptotic normality of the estimator

justifies use of Wald-type confidence intervals (CIs) in 
large samples. Here, the SAS procedure IML was used for 
M-estimation (SAS Institute Inc., Cary, North Carolina). 
Software code for example 2 is provided in Web Appendix 1 
(available at https://doi.org/10.1093/aje/kwac067). Alterna-
tively, the package “geex” (12) can be used to compute M-
estimators and empirical sandwich variance estimators in R 
(R Foundation for Statistical Computing, Vienna, Austria).

CASE 1: TRANSPORTING THE PROPORTION

Approach

Say a study sample of n units is available, with binary 
outcome Y and measured covariates W, with records denoted 
by R = 1. The goal is to estimate the prevalence of Y in 
a target population using data from this study. However, 
the study sample is not a random sample from the target 
population; rather, it is a biased sample from the target 
population (or can be thought of as a random sample from 
some other population). We also have a random sample of m 
additional units from the target population, with measured 
covariates W (but the outcome Y is not measured in this 
auxiliary data), with records denoted by R = 0. The n and m 
units are independent (both within and across samples) but 
are not identically distributed. Here N = n + m.

Using only data from the R = 1 sample will generally 
result in a biased estimate of the prevalence of Y in the 
target population. The R = 0 random sample from the 
target population provides a way to correct for this bias. 
For intuition, think of the R = 1 sample as a W-stratified 
random sample from the target population, where the strata-
specific sampling probabilities are unknown. The R = 0 
random sample from the target population provides a way 
to recover the unknown sampling probabilities. Specifically, 
we estimate a “sampling” score as the probability of a unit 
appearing in the main study, versus the auxiliary study, given 
that the unit appears in one or the other, or P(R = 1|W), 
where R = 1 if the unit is in the main study and R = 0 if 
the unit is in the auxiliary study. Then we use the predicted 
probabilities from the sampling score model to estimate the 
sampling odds weights, P(R = 0|W)/P(R = 1|W), and  
weight individuals in the R = 1 sample so that, asymptot-
ically, the weighted sample has the same W distribution as 
the target population.

Momentarily assume the sampling odds weights are 
known. Let θ = E(Y|R = 0) denote the mean of Y in 
the target population, X = (YR, R, W) the observable data, 
and π = π(W) = P(R = 0|W)/P(R = 1|W). Note that 
the estimating function for θ, g(X; θ) = R(Y − θ)π, has  
mean 0 (Web Appendix 2). Therefore, a consistent and

https://doi.org/10.1093/aje/kwac067


Table 1. Estimated Bias, Standard Errors, and 95% Confidence Interval Coverage for 5,000 Simulations Transporting a Proportion to a Given
Target Population

Biased Main-Study
Sample Size, n

Auxiliary Random
Sample Size, m

True Proportion Biasa Average
Sandwich SE

Empirical SE
95% CI

Coverage

200 200 0.1 −0.002 0.020 0.021 93.3

200 0.5 0.007 0.038 0.039 94.0

500 0.1 0.000 0.020 0.020 93.9

500 0.5 0.011 0.037 0.037 93.8

500 200 0.1 −0.003 0.014 0.014 93.5

200 0.5 0.005 0.027 0.026 94.2

500 0.1 −0.002 0.013 0.013 94.0

500 0.5 0.009 0.024 0.024 93.2

Abbreviations: CI, confidence interval; SE, standard error.
a Monte Carlo simulation SE ≤ 0.001 for each row.

among those aged ≥35 years. To illustrate features of the
proposed approach, we take simple random samples without
replacement of sizes m = 200, m = 500, and m = 5,000 from
the auxiliary Centers for Disease Control and Prevention
data. The logistic model fitted to estimate the sampling score
included sex, age ≥35 years, and their product.

Example results

The observed outcome proportion in the main sample was
10.9% (63/579). The outcome was more common among
patients aged ≥35 years (i.e., 61/402) than among those aged
18–34 years (i.e., 2/177). With an auxiliary sample size of
200, the estimated transported proportion who developed
AIDS or died was 8.0% (95% CI: 5.8, 10.1). Given the
structure of this example, we would expect the transported
estimate to be smaller than the sample estimate. In the
main sample of 579, the estimated odds weights had a
mean of 0.35, with a minimum of 0.23 and a maximum of
0.61. The sandwich standard error (SE) for the proportion
developing AIDS or death was 0.0109, the sandwich SE that
ignores the variability in the weights was 0.0102, and the
nonparametric bootstrap SE was 0.0117 (the nonparametric
bootstrap SE was calculated by the standard deviation of 500
estimates, each estimate based on simple random samples
of sizes n and m with replacement from the observed data
sets).

With an auxiliary sample size of 500, roughly the same as
the size of the main study sample, the estimated proportion
who developed AIDS or died was 7.8% (95% CI: 5.8, 9.8).
In the main sample of 579, the odds weights had a mean
of 0.86, with a minimum of 0.57 and a maximum of 1.58.
Here, the sandwich SE for the proportion who developed
AIDS or died was 0.0101, the sandwich SE that ignored
the variability in the weights was also 0.0101, and the
nonparametric bootstrap SE was 0.0105.

With a large auxiliary sample size of 5,000, the estimated
proportion who developed AIDS or died was 8.5% (95% CI:
6.5, 10.5). In the main sample of 579, the odds weights had a

mean of 8.6, with a minimum of 6.3 and a maximum of 14.7.
Here, the sandwich SE for the proportion who developed
AIDS or died was 0.0102, the sandwich SE that ignored the
variability in the weight was 0.0107, and the nonparametric
bootstrap SE was 0.0107. In summary, regardless of the size
of the auxiliary data, accounting for biased sampling yielded
a clinically meaningful 2%–3% difference in the estimated
proportion who developed AIDS or died.

Simulations

We explored 8 scenarios, one of which was chosen to
roughly mimic the example. We generated 5,000 biased
main study samples, each of size 200 or 500, with a true
proportion of Y of 10% or 50%, and a standard normal
auxiliary covariate W. Specifically, Y was a Bernoulli ran-
dom variable with marginal expectation of 0.1 or 0.5 and
an odds ratio of e1 for a unit difference in W. The indicator
of sample selection R was also a Bernoulli random variable
with marginal expectation of 0.5 and an odds ratio of e1

for a unit difference in W. We also generated 5,000 simple
random auxiliary samples of size 200 or 500, with only W
measured. For each of the scenarios explored, we present the
bias (i.e., the average of the difference between the estimates
and the true data-generating value), average sandwich SE,
empirical SE (i.e., standard deviation of simulated point
estimates), and 95% CI coverage (i.e., proportion of 95%
CIs that contain the true value).

Simulation results

Table 1 shows the bias, average sandwich SE, empirical
SE, and 95% CI coverage. The fusion estimator was approx-
imately unbiased, with an average (over 8 scenarios) of the
absolute value of the bias of 0.005. The average sandwich
SE approximated the empirical SE well across the scenarios
explored. The average (over 8 scenarios) 95% CI coverage
was 93.7%.



CASE 2: ESTIMATING A MISCLASSIFIED PROPORTION

Approach

Say we want to estimate the proportion exposed in a
population at a point in time, specifically, P(Y = 1|R =
0) = α, where Y is the binary exposure indicator variable.
Note that symbols are recycled, such that the notation from
case 1 does not carry across here to case 2. We have a
random sample of n0 units from the population of interest,
with binary W being a mismeasured version of Y . We have
a random sample of n1 units, with W measured, from the
stratum of the population where Y = 1, and we have a
random sample of n2 units, with W measured, from the
stratum of the population where Y = 0.

It is straightforward to show (15, 16) that P(Y = 1|R =
0) = [P(W = 1|R = 0) + δ − 1]/(γ + δ − 1), where
γ = P(W = 1|Y = 1, R = 0) is the sensitivity and
δ = P(W = 0|Y = 0, R = 0) is the specificity of the
measurement instrument. Let Ri = 0 if unit i is one of the n0
units from the main sample, Ri = 1 if unit i is one of the n1
units from the auxiliary sample where Y = 1, and Ri = 2 if
unit i is one of the n2 units from the auxiliary sample where
Y = 0. Then X = (W, R), N = n0 +n1 +n2, and the stacked
estimating function is

gθ(X; θ) =
⎛
⎜⎝

gβ(X; β)
gγ(X; γ)
gδ(X; δ)

gα(X; α, β, γ, δ)

⎞
⎟⎠

=
⎛
⎜⎝

I(R = 0) (W − β)
I(R = 1) (W − γ)

I(R = 2) [(1 − W) − δ]
α(γ + δ − 1) − (β + δ − 1)

⎞
⎟⎠ ,

auxiliary data on 331 individuals, the estimated sensitivity
and specificity are 84% (95% CI: 80, 89) and 80% (95% CI:
71, 88), respectively. The fusion estimator of the prevalence,
accounting for imperfectly known sensitivity and specificity,
is 80% (95% CI: 72, 88). The fusion estimator is notably
larger than the naive observed prevalence of 72% because of
the modest sensitivity and specificity. The sandwich SE esti-
mate for the fusion estimator is 0.040, while the estimated
SE for the observed data estimator is 0.015, illustrating
the uncertainty added by the fusion estimator as a cost of
correcting the point estimate with data from relatively small
validation samples. To compare, we also estimated the SE
of the corrected proportion using the standard deviation of
500 nonparametric bootstrap random samples (size n1, n2, n3
with replacement). The bootstrap SE estimate was 0.039.

If the true prevalence were indeed 80% (i.e., the fusion
estimate was unbiased), the root mean squared error for
the fusion estimator would be 0.040, while the root mean
squared error for the observed data estimator would be
0.081. Under this assumption, the sizable measurement bias
reduction outweighs the added uncertainty, at least in terms
of squared error.

If the validation sample were of size 20,000 rather than
331, then both the sensitivity and the specificity would
be subject to much less random error, and the estimated
sandwich SE for the fusion estimator would be reduced from
0.040 to 0.023 (and the bootstrap SE estimate would be
0.022).

Simulations

Data were simulated under 18 scenarios, 1 of which was
chosen to approximately mimic the example. For each sce-
nario, 5,000 samples were generated, each of size 1,000. The
scenarios were defined by a true point prevalence of 50%
or 80%; an observed point prevalence misclassified with
sensitivity and specificity of 85% and 80%, 85% and 75%,
or 75% and 75%, respectively; and independent auxiliary
samples for sensitivity and specificity of sizes 200 and 200,
200 and 100, or 100 and 100, respectively.

Simulation results

Table 2 shows the bias, average sandwich SE, empirical
SE, and coverage of the 95% CI. The upper half of Table 2
details results for situations where the true prevalence is
50%. The bottom half of Table 2 details results for situations
where the true prevalence is 80%. The method is approx-
imately unbiased for the prevalence, and the sandwich SE
estimator is also approximately unbiased. The 95% CI pro-
vides approximately nominal coverage, with an average
coverage of 95.9% for the 18 scenarios in Table 2.

DISCUSSION

Here we have demonstrated 2 simple examples of fusion
designs and estimators. In both cases, the examples illus-
trated the benefit of the fusion estimator, and the simulations
showed favorable operating characteristics.

where θ = (α, β, γ, δ). Note that the last row of gθ(X; θ) is 
a function only of the other parameters (see example 2 in 
Stefanski and Boos (8)).

Example

We wish to learn the point prevalence of HIV treatment for 
HIV-positive adults in the United States. We have a sample 
of n1 = 950 HIV-positive adults enrolled in HIV interval 
cohort studies, as described in Cole et al.’s (17) Table 1. Data 
from independent and exchangeable patients are available 
for sensitivity (n2 = 242) and specificity (n3 = 89) of  
the self-report of HIV treatment as compared with extensive 
medical and pharmacy records review as a gold standard (see 
Appendix of Cole et al. (17)). To illustrate some features 
of the proposed approach, we consider a separate example 
that assumes the auxiliary sample data set has the size 
20,000 (= 10,000 + 10,000), rather than the observed 331 
(= 242 + 89).

Example results

If 680 of the 950 participants report HIV treatment, the 
observed prevalence is 72% (95% CI: 69, 74). Given the



Table 2. Estimated Bias, Standard Errors, and 95% Confidence Interval Coverage for 5,000 Simulations
Correcting a Misclassified Proportion

Sensitivity Specificity
Validation

Sizesa Biasb Average
Sandwich SE

Empirical SE
95% CI

Coverage

Prevalence = 0.5

0.85 0.80 200, 200 0.000 0.039 0.038 95.5

0.80 200, 100 −0.001 0.045 0.045 95.6

0.80 100, 100 0.000 0.050 0.048 96.3

0.75 200, 200 −0.001 0.043 0.043 95.8

0.75 200, 100 −0.002 0.051 0.050 95.7

0.75 100, 100 −0.001 0.055 0.054 96.3

0.75 0.75 200, 200 0.000 0.056 0.055 95.8

0.75 200, 100 −0.002 0.064 0.064 96.4

0.75 100, 100 0.000 0.072 0.070 96.7

Prevalence = 0.8

0.85 0.80 200, 200 0.001 0.040 0.039 95.4

0.80 200, 100 0.000 0.041 0.040 95.8

0.80 100, 100 0.002 0.053 0.051 96.1

0.75 200, 200 0.000 0.044 0.043 95.6

0.75 200, 100 0.000 0.045 0.044 96.0

0.75 100, 100 0.002 0.058 0.056 96.2

0.75 0.75 200, 200 0.002 0.060 0.061 95.3

0.75 200, 100 0.001 0.061 0.061 95.7

0.75 100, 100 0.004 0.080 0.080 95.8

Abbreviations: CI, confidence interval; SE, standard error.
a Validation sizes are for sensitivity and specificity samples; the main study sample size was 1,000.
b Monte Carlo simulation SE ≤ 0.001 for each row.

Fusion designs are common. There is a long history of
combining empirical studies, in epidemiology, statistics,
and elsewhere (e.g., see Pearson (18)). Recent work on
generalizability can be cast as fusion designs (2, 4, 19,
20), and early examples of fusion designs include 2-stage
studies (5, 6, 21). For example, in a classical 2-stage study,
covariate information is available only for a subset of
study participants. Likewise, in some measurement-error
correction and generalizability studies, the auxiliary data
are obtained on a subset of participants in a single study
rather than from multiple studies; but in such cases, the
stages of the study can be thought of as distinct data sources
to facilitate the use of fusion designs. Indeed, in such
cases where the auxiliary data are obtained on a random
subsample, the identification conditions given above are
guaranteed by design, rather than by assumption. The fusion
estimators described here can be adapted to such settings
(22). There are also connections between meta-analysis and
fusion designs. Traditionally, meta-analysis has entailed
combining trial-specific effect estimates; however, the
resulting pooled estimate does not necessarily have a causal
interpretation. On the other hand, valid causal inferences can
be drawn by pooling, or fusing, data from individual trials
(23). Although not illustrated in this paper, fusion estimators
can be semiparametric, when 1 or more components of the

parameter θ are infinite dimensional and the balance are
finite dimensional (24, 25). Likewise, fusion estimators
can be (semi-) Bayes estimators, by leveraging existing
information for (a subset of) the parameters (26–28).

There are limitations to fusion designs and estimators.
First, some identification conditions must be met in any
study design for an estimator to provide valid results. Indeed,
there are additional identification conditions for fusion study
designs regarding the exchangeability between data sources.
For example, see the discussion of identification in recent
work on generalizability (29) and bridged treatment com-
parisons (3). While fusion designs can identify parameters
not identified in conventional study designs, further research
is needed regarding the extent to which fusion design iden-
tification conditions have testable implications (23, 30).
Second, the estimators illustrated here have a large sample
justification and are subject to finite sample bias. In small
samples, penalization may improve operating characteris-
tics (31, 32). Third, here, in both cases, we accounted for
estimation of the nuisance parameters when estimating the
variance of the parameters of interest. One need not always
do so. Newey and McFadden showed that we generally must
account for estimation of the nuisance parameters if and only
if consistency of the nuisance parameter estimator affects
consistency of the target parameter estimator (see Newey



and McFadden (33), section 6). Fourth, the inverse odds
weighted estimator described for case 1 is not semipara-
metric efficient. A more efficient estimator can be obtained
by augmenting this estimator with information from an
outcome model (24, 34). Fifth, when using finite dimension
parametric models, as in case 1, when such a model is
misspecified the resulting estimate may be interpreted as
estimating the least false parameter. In such cases, bias
will result when the least false parameter does not coincide
with the population parameter. Sixth and last, there is much
still to understand regarding the use of fusion designs in
epidemiology. Comparisons of the accuracy (e.g., mean
squared error) of parameter estimators from standard and
fusion study designs, across a broad set of realistic scenarios,
would be helpful.

In conclusion, fusion study designs can help investigators
appropriately combine data from multiple sources of infor-
mation. A unification of this variety of designs may provide
hidden insights and allow epidemiologists to better realize
the power of combining data to answer important questions.
Moreover, such a unification would enhance communication
and may help create a common language for individuals
from different disciplines to make better use of seemingly
discipline-specific study designs.
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