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1. Introduction

HIV attacks an infected person’s immune system, making them prone to opportunistic infections, AIDS,
and eventually death. CD4 cell count is a marker of the strength of the immune system, and it declines
during the natural course of HIV infection. With the introduction of effective combination antiretroviral
therapy (ART) in the late 1990s, HIV has become a treatable chronic disease: HIV-infected persons who
take ART greatly reduce the amount of virus circulating in their body, raise their CD4 count, and can
remain generally healthy. A fundamental question in the treatment of HIV has been as follows: When,
specifically at what CD4 count, should an HIV-infected person start ART? It has long been clear that
patients should start ART before their CD4 drops to levels at which the risk of AIDS or death becomes
high (e.g., <200 cells/mm3). However, because ART must be taken for life and because there are short-
term and long-term toxicities associated with the medications and the potential for generating resistance
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mutations through non-adherence, there has been reluctance to start treatment immediately if CD4 count
is relatively high (e.g., >500 cells/mm3).

Most of the early data addressing the when-to-start question came from observational studies looking
at the association between CD4 at ART initiation and the subsequent time until AIDS or death (e.g., [1]).
It is well known, however, that these studies are poor at addressing the when-to-start question, not just
because of the inherent limitations of observational studies (e.g., confounding) but also because they
could be subject to lead time bias [2]. Briefly, suppose a researcher wanted to compare two treatment
rules: start ART when CD4 drops below 500 (immediate therapy) versus start when CD4 drops below
350 (defer therapy). An ideal study would randomize patients at the time their CD4 first falls below
500 to immediate or deferred therapy and start follow-up for both treatment arms at the time of random-
ization. A study that compares immediate versus deferred therapy but only compares the time from ART
initiation until event inappropriately ignores the time it took for CD4 to drop from 500 to 350 (i.e., lead
time due to left truncation) for subjects in the deferred therapy group. Such an approach also ignores
events that may have happened among patients not on ART after their CD4 dropped below 500 but
before reaching 350 (i.e., unseen events). These problems are similar to those arising from ‘prevalent
sampling’, which in our case involves only including those who started ART [3].

The when-to-start ART question prompted the development of new statistical methods for observa-
tional data to deal with lead time bias and other issues. We focus on two specific methods, a multiple
imputation (MI) approach [4] and a dynamic marginal structural model (dMSM) approach [5]. Briefly,
the MI approach uses observational data beginning at ART initiation and augments these data by imput-
ing lead time and unseen events in the deferred therapy arm using additional, historic data. In contrast,
the dMSM approach uses observational data both before and after ART initiation, starts follow-up when
CD4 drops below a specific constant threshold, expands data when it is consistent with more than one
treatment initiation rule, censors data when it becomes inconsistent with particular treatment initiation
rules, and uses inverse probability weighting to remove potential bias. More detailed descriptions of
the two approaches are given in the Section 2.

In April 2009, two papers were published, one in the Lancet and the other in the New England Journal
of Medicine, which addressed the when-to-start ART question using the MI and dMSMmethods, respec-
tively, and they came to different conclusions [6,7]. Using data from 24,444 ART initiators from North
America and Europe (the ART-CC cohort) and 21,247 patients from the pre-ART era, Sterne and col-
leagues applied the MI approach and obtained results suggesting that it was optimal to start ART at
CD4>350 but that there was little benefit to starting at higher CD4 counts. In contrast, using data from
17,517 patients in North America (the NA-ACCORD cohort), Kitahata and colleagues applied an
analysis based on the dMSM approach and concluded that it was best to start ART at CD4>500.

The conflicting results led to confusion among HIV clinicians and policymakers who were left won-
dering what to believe – particularly, given the complexity of both studies’ analyses. In addition, the
NA-ACCORD analysis was criticized for incorrectly applying the dMSM approach – most notably
for incorrectly handling periods of time during which a patient’s data were consistent with multiple
treatment rules [8], although subsequent sensitivity analyses suggested that this issue had little impact
on results [9].

There have been additional methodological developments and investigations to estimate the optimal
timing of treatment with observational data (e.g., [10–14]). There have also been other estimates of
the optimal timing of ART initiation using variations of the dMSM approach applied to observational
HIV data; these studies generally obtained results more consistent with the ART-CC analysis [15–17].
A randomized trial was conducted in Haiti, which demonstrated that it is better to start at CD4 between
200 and 350 compared with <200 [18]. In many clinicians’ eyes, the question of when to start ART was
answered in favor of starting as early as possible, given little evidence of harm in observational studies
and because of strong evidence suggesting that early ART initiation prevents transmission of HIV to
others [19,20]. However, until recently, this view has been challenged [21]. A large randomized trial
comparing the rules start ART with CD4<350 vs.>500 was recently stopped early because of evidence
of protection in the >500 arm [22,23]. There were many key differences between this trial and the
observational studies. However, these latest results have generally pushed the field towards starting
ART as early as possible.

Despite recent developments, it is important to better understand differences between the NA-
ACCORD and ART-CC results. In particular, a better understanding is important for the credible future
use of these types of methods – for questions pertaining to HIV infection or to other diseases. The two
research groups applied different statistical methods to different patient populations and got different



results. What would happen if the two statistical methods were correctly applied to data from the same
cohort – would they produce similar results? There are fundamental differences between the two ap-
proaches that could be the cause of the discrepancy, including differences between the estimands, re-
quired data, and assumptions. In addition, there were many technical differences between the
implementation of the two approaches. For example, the studies compared different CD4 thresholds,
included different covariates, and handled censoring differently. What is the impact of these technical
decisions on estimates? What would happen if the two statistical methods were applied to data from
the same cohort holding technical details constant?

In this study, we used data from a separate cohort, the Center for AIDS Research Network of Inte-
grated Clinical Systems (CNICS), together with data from the Vanderbilt Comprehensive Care Clinic
(VCCC), and applied the MI and dMSM approaches – holding technical details constant – to address
the question of when to start ART. Rather than try to reproduce the exact ART-CC and NA-ACCORD
analyses, we attempted to perform analyses in manners consistent with the original methodological
publications. In Section 2, we describe and compare central aspects of the methods. In Sections 3 and
4, we describe our implementation of the methods and present results using the CNICS+VCCC data. In
Section 5, we provide a brief simulation study, and in Section 6, we discuss findings and provide general
conclusions.

2. Methods: estimands, data, and assumptions

In this section, we provide a brief overview of the MI and dMSM approaches, focusing on estimands,
required data, and assumptions. We also compare these fundamental features between the two methods.

2.1. The multiple imputation approach

The MI approach considers HIV-positive, treatment-naïve, event-free persons whose CD4 (measured in
the past m’ months) is in a specific range, (xdefer, ximmediate], for example, (350, 500], and compares the
time to event (death or the composite outcome AIDS/death) for those who start ART immediately (de-
noted R=0) versus those who defer ART initiation until CD4 is in (xa, xdefer], for example, (200, 350]
(denoted R=1). Let T be the time from when CD4 is in (xdefer, ximmediate] (‘baseline’) to event, C be
the time from baseline to censoring, Y be the minimum of T and C, and Δ be the indicator of an event.
Of interest is to compare the hazard of death between those with R=1 and R=0, specifically, to estimate
α in a Cox proportional hazards model with the hazard of event equaling λ0(t)exp(αR).

The MI approach was developed under the context that data are only available among ART initiators
and from the time of ART initiation. Therefore, the time from baseline to ART initiation (‘lead time’) is
unknown for those in the defer therapy arm. Furthermore, there are a certain number of individuals, de-
noted as n*, who had a CD4 count in (xdefer, ximmediate] but had an event prior to starting ART and were
therefore not included in the database. The MI approach augments the incomplete observational data
from ART initiators by imputing lead time and unseen events. To impute lead time and unseen events,
data from the pre-ART era are used, where one can model the natural history of HIV without the impact
of effective therapies. Specifically, let Y0 be the observed time from ART initiation until the first of event
or censoring. If R=0, then Y=Y0; however, if R=1, then Y=Y0 +YL, where YL is the lead time, or the
time from baseline to starting ART. The MI approach imputes YL for those with R=1, thereby making
Y available for all patients. The MI approach also imputes n*, the number of patients with unseen events,
and then imputes Y for these n* patients and assigns them R=1 and Δ=1. The hazard ratio, exp(α), is
then estimated using the complete data, some of which are imputed. The process is repeated multiple
times, and estimates are combined using standard MI formulas [24].

For writing assumptions, we use potential outcomes notation, with T(r) and C(r) denoting the poten-
tial times to event and censoring, respectively, if R= r. To obtain an unbiased estimate of the hazard
ratio, the MI approach makes the following key assumptions:
A1 Independent censoring: T(r) is independent of C(r).
A2 No confounding: (T(r), C(r)) are independent of R.
A3 The imputation model is correct.
The independent censoring and no confounding assumptions A1 and A2 are standard for time-to-event
analyses and could be relaxed by conditioning on other covariates; however, the original MI approach and
its implementation by the ART-CC implicitly assumed A1 and A2 without conditioning on covariates.



Assumption A3 is that models of event rates and CD4 decline in the pre-ART era are an accurate reflection
of what they would have been in the absence of treatment in the post-ART era. Stated alternatively, A3
states that lead time and event rates in the pre-ART era are exchangeable with that in the post-ART era.

The estimand, required data, key assumptions, and necessary models for the MI approach are
summarized in Table I.
2.2. The dynamic marginal structural model approach

The estimand for the dMSM approach is the hazard ratio comparing the rules: (i) start ART within m
months of CD4 first dropping below ximmediate, for example, 500 (immediate therapy; R=0) versus (ii)
start ART within m months of CD4 first dropping below xdefer, for example, 350 (defer therapy;
R=1). To estimate this hazard ratio, the dMSM approach uses longitudinal data of CD4 count, ART
use, other covariates, and events from treatment-naïve, event-free patients beginning at enrollment in
care (i.e., before ART initiation).

The dMSM approach attempts to analyze the observational data in a manner that mimics a random-
ized trial. For example, if one were comparing the rules start when CD4 drops below 500 (immediate
therapy arm) versus start when CD4 drops below 350 (deferred therapy arm), a trial might randomize
patients at their first CD4 observation below 500 to either immediate or deferred therapy. With the ob-
servational data, anyone who started ART when their CD4 first dropped below 500 (within a grace pe-
riod of mmonths) would be in the immediate group, whereas anyone who did not start at that time would
be in the deferred group. If patients in the deferred group started ART within mmonths of their CD4 first
dropping below 350, then their data would be consistent with the rule ‘start within mmonths of CD4 first
dropping below 350’. Similarly, if they had an event before their CD4 dropped below 350 and they had
not yet started ART, then their data would also be consistent with the ‘start within mmonths of CD4 first
dropping below 350’ rule. However, if they started ART too early (e.g., before their CD4 dropped below
350, but not within mmonths after it dropped below 500) or too late (e.g., they failed to start ART within
m months after it first dropped below 350), then their data would no longer be consistent with either
treatment rule. A patient’s CD4 and treatment history may be consistent with both ART initiation rules
for some (or all) of their follow-up time; in this case, the dataset is expanded using duplicate records (one
in the immediate therapy arm and one in the deferred therapy arm) for the period of time in which their
Table I. Comparing the estimands, necessary data, assumptions, and models of the MI and dMSM methods.

Multiple imputation method Dynamic marginal structural model method

Estimand: hazard ratio comparing
(1) Start ART with CD4 measured within the last

m’ months in (xdefer, ximmediate]
(1) Start ART within m months of CD4 first dropping
below ximmediate

versus versus
(2) Start ART with CD4 measured within the last

m’ months in (xa, xdefer]
(2) Start ART within m months of CD4 first dropping
below xdefer

Necessary data
CD4 at ART initiation, time from ART initiation

to event or last visit
All CD4 measurements since enrollment (before and after
ART initiation), covariates (both time invariant and
varying), date of ART initiation, dates of events, dates
of last visits

External data from pre-ART era: all CD4
measurements, dates of events, dates of last visits

Key assumptions
A1. Independent censoring: T(r) is independent

of C(r)
B1. Independent censoring: DK rð Þ� �

is independent of Ct

(r) conditional on Lt ; At�1, and Dt = 0
A2. No confounding: (T(r), C(r)) are independent of R B2. No confounding: DK rð Þ� �

is independent of At

conditional on Lt; At�1 = 0, and Dt = 0A3. The imputation model is correct

Models to be fit
(1) External data from pre-ART era: joint model of

probability of event and time to CD4 dropping below xdefer
(1) Probability of starting ART
(2) Probability of being censored

(2) Hazard of event using data imputed from model 1 (3) Hazard of event weighted by inverse probability
weights derived from models 1 and 2

ART, antiretroviral therapy; MI, multiple imputation; dMSM, dynamic marginal structural model.



data are consistent with both rules. A patient contributes to whatever arm their data are consistent with
until their data are no longer consistent with that treatment rule, at which time they are artificially cen-
sored from that arm. Details of this approach in a general setting with more than two treatment rules are
well illustrated elsewhere [12]. To account for potential bias induced by this artificial censoring, the
dMSM approach uses inverse probability weighting to assign more weight to observations that, based
on their covariate history, were more likely to have been censored, but were not. Hazard ratios or other
metrics to compare the immediate and deferred therapy arms can then be estimated, and sandwich var-
iance estimates are used to account for correlation induced by duplicating records.

Let t=0 be the time when CD4 is first measured in the range (xdefer, ximmediate], and let t=1, …, K be
the subsequent months, with K denoting the maximum follow-up time. At is the indicator of being on
ART at month t, Dt is the indicator of an event at month t, Lt are covariates at month t, and Ct is the in-
dicator of being censored (due to loss to follow-up (LTFU) or end of study) at month t. Āt and Lt denote
treatment and covariate history up until, and including, month t. In addition to the standard causal as-
sumptions of consistency and positivity [25], the dMSM approach makes the following key
assumptions:
B1 Independent censoring: DK rð Þ� �
is independent of Ct(r) conditional on Lt; At�1, and Dt=0 for

all t=0, 1, …, K.
B2 No confounding: DK rð Þ� �

is independent of At conditional on Lt; At�1 = 0, and Dt=0 for all
t=0, 1, …, K.
The estimand, required data, key assumptions, and necessary models for the dMSM approach are
summarized in Table I.
2.3. Comparing the MI and dMSM approaches

The MI and dMSM approaches have fundamental differences in their estimands, the data required, and
their assumptions, which we highlight in Table I and in this section.

First, there are differences between the two approaches’ hazard ratio estimands. The dMSM approach
compares starting ART within mmonths of CD4 first dropping below ximmediate versus xdefer, whereas the
MI approach compares starting ART with most recent CD4 (measured within the last m’ months) in the
range (xdefer, ximmediate] versus (xa, xdefer]. Even with m=m’, these estimands are different. For example,
there is no time period connected to the MI estimand – a patient could have CD4 in the range (xdefer,
ximmediate] for years and as long as they started ART while in range, then their data are consistent with
the treatment rule. Therefore, this regimen is clinically ambiguous, as a clinician/patient does not know
when their CD4 will drop such that they are no longer compliant with the regimen. In contrast, using the
dMSM estimand, such a person would be censored from the immediate therapy arm after m months and
would actually contribute most of their follow-up time to the deferred treatment arm (up until the point
that they started ART, at which time they would be artificially censored). This event-free time, which
would favor deferring therapy in the dMSM approach, would be ignored in the MI approach. With that
said and acknowledging the presence of long-term non-progressors, most HIV-infected persons do not
stay in the same CD4 stratum for years without ART.

As another example of differences between estimands, the dMSM approach could include a person who
started ART within mmonths of CD4 first measured in the range (xdefer, ximmediate] in the immediate treat-
ment arm even if they had a subsequent pre-ART CD4 below xdefer – even substantially below. Note that
this person would be included in both the immediate and deferred arms using the dMSM approach,
whereas with the MI approach this person would be included, at most, in the deferred treatment group.
(In fact, it is arguable that for persons whose CD4 decrease precipitously such that they never have a mea-
surement in (xa, xdefer], their potential outcomes for R=1 under the MI approach do not exist.) The
supporting information contains a table showing a few hypothetical CD4 and ART histories and details
into which treatment arms patients would be placed under the two approaches, highlighting differences.

Second, there are differences in the data required by the two methods. The dMSM approach incorpo-
rates a patient’s pre-ART follow-up into the analysis, whereas the MI approach only uses post-ART
follow-up. Because of this, the MI approach requires imputing lead time and unseen events using models
based on external data. If complete follow-up data are available (as is the case with our CNICS+VCCC
analysis dataset described in the succeeding discussion), the MI approach somewhat unnaturally dis-
cards pre-ART data. In contrast, in practice, the dMSM approach necessitates discretizing time into pe-
riods, such as monthly intervals, which can result in some loss of information. In addition, the dMSM



approach has stricter inclusion criteria (a CD4 count in (xdefer, ximmediate] prior to receiving ART) than the
MI approach (a CD4 count in (xa, ximmediate] prior to receiving ART). The causal estimands are
interpreted in the context of patients meeting inclusion criteria, so differences between the MI and
dMSM inclusion criteria may have implications beyond simply which records are used for the analysis.

Finally, there are differences in the assumptions between the two approaches. Writing the MI ap-
proach in the same notation as the dMSM approach may be helpful for comparing assumptions. Every-
one in the defer arm under the MI approach can be thought of as starting ART at time k, where k is
imputed and varies between patients, and setting Aj=1 for j≥ k. Imputing unseen events in the defer
arm can be thought of as imputing n*, k, and then setting Dk=1 and Aj=0 for j≤ k. In the immediate
therapy arm, A0 = 1.

With this notation, assumptions A1 and A2 can be re-written as the following:
A1 Independent censoring: DK rð Þ� �
is independent of CK rð Þ� �

for all t=0, 1, …, K.
A2 No confounding: DK rð Þ� �

is independent of A0.
Assumptions A1 and A2 of the MI approach can then be compared with assumptions B1 and B2,
respectively, of the dMSM approach. With regard to independent censoring, note that B1 is an as-
sumption of conditional independence and is therefore weaker than A1 . With regard to assumptions
of no confounding, A2 differs from B2, not just that B2 is conditional on covariates but also that
the event vector is assumed to be conditionally independent of At at all t, whereas A2 only assumes
independence (unconditional) from At at time 0. Therefore, in some ways, A2 is both a stronger and
weaker assumption than B2. Although pedagogically helpful, the comparisons with this notation are
not perfect. As discussed previously, the treatment initiation rules, r, differ between the MI and dMSM
approaches.

Assumption A3 for the MI approach remains the same. No similar assumption is needed for the
dMSM approach.

Further discussion of these assumptions and their plausibility with the CNICS+VCCC data is given
in Section 6.

3. Implementation details

In this section, we go through details of the implementation of both the MI and dMSM approaches to the
CNICS+VCCC data. In general, we tried to be consistent with what was performed in the NA-
ACCORD and ART-CC publications while being true to the original methodological publications.
We also describe implementation of analyses with technical details held constant between the two ap-
proaches. All analyses were performed in R version 3.0.2. Analysis scripts are posted at http://biostat.
mc.vanderbilt.edu/ArchivedAnalyses

3.1. Multiple imputation approach

The MI approach requires data from the pre-ART era to impute lead times and unseen events in the de-
ferred therapy arm. Data from the pre-ART era are limited and were used by the ART-CC in their anal-
ysis. We also used the same data, specifically, data from patients in the Multicenter AIDS Cohort Study,
the Swiss HIV Cohort Study, the ANRS CO4 French Hospital Database on HIV, the ANRS CO3 Aq-
uitaine Cohort, the Amsterdam Cohort Studies, the South Alberta Clinic, and the Concerted Action on
Seroconversion to AIDS and Death in Europe collaboration. Rather than using the original data, we sim-
plified our analyses by using the pre-ART parameter estimates that the ART-CC obtained from these
data and used to impute lead times and unseen events.

For a comparison between two CD4 thresholds, ximmediate and xdefer, where xdefer< ximmediate, patients
were considered eligible for inclusion if they started ART with a CD4 count at ART initiation between
xdefer� (ximmediate� xdefer) and ximmediate. In all of our analyses, ximmediate and xdefer were separated by 100
cells, so this simplified to a person being eligible if they started ART with CD4 in the range (xdefer�100,
ximmediate] (e.g., (300, 500] if comparing ximmediate = 500 vs. xdefer = 400). CD4 at ART initiation was the
measurement closest to but no more than m’=3months prior to ART initiation; patients without a CD4
measurement in that window were excluded.

Lead time was added to all patients in the deferred arm by randomly drawing from a generalized
gamma distribution [26] with parameters estimated from the pre-ART era data. The generalized gamma
distribution is a flexible family that contains many of the most commonly used distributions for time-
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to-event outcomes and hazard functions and was used in the ART-CC’s implementation of the MI
approach. The number of unseen events to be added to the deferred arm was randomly selected from
a negative binomial distribution, and the corresponding time of the event was drawn from a generalized
gamma distribution, again using parameter estimates from the pre-ART era data. Unadjusted hazard ra-
tios, comparing the time to event in the immediate versus deferred arms, and their standard errors were
then computed with a Cox regression model using the augmented data. This process was repeated for 20
imputation replications.

For our initial analyses, we incorporated the technical details of the ART-CC paper as summarized in
Table II. For patients who did not experience an event, we added 2months to the patients’ follow-up
time (corresponding to approximately 50% of the mean time between follow-up visits; time between
follow-up visits was similar across sites). Patients with an AIDS-defining event prior to ART initiation
were excluded. For our sensitivity analyses, we investigated the impact of the technical details on esti-
mates by perturbing them one at a time from a base model (shown in bold in Table II, except with time
kept continuous).

3.2. Dynamic marginal structural model approach

Data were initially discretized into 30-day intervals (labeled as months). ART initiations, CD4 measure-
ments, AIDS-defining events, or deaths that occurred in the range (30, 60], for example, were assigned
to month 2, taking care to maintain the temporal ordering of measurements, exposures, and events. For
example, if CD4 was measured on day 35 and ART was started on day 40, then both were assigned to
month 2; in contrast, if CD4 was measured on day 40 and ART was started on day 35, then the CD4
measurement on day 40 was assigned as a month 3 measurement (unless superseded by a later month
3 measurement), and CD4 from month 1 was carried forward as the month 2 measurement. Similarly,
a CD4 measured during the same month but after an AIDS-defining event was assigned to the next
month; and an AIDS-defining event that occurred during the same month as, but prior to, ART initiation
was counted as an event prior to ART initiation.

For a comparison between two CD4 thresholds, ximmediate and xdefer, patients were considered eligible
for inclusion if they had a CD4 count in (xdefer, ximmediate] prior to receiving ART. Time 0 was the time of
this first qualifying CD4 measurement. Patients with an AIDS-defining event on or before time 0 were
excluded. Note that for the analyses with death as the outcome, any AIDS-defining events after time 0
were ignored (i.e., they were not part of the starting rules). Similar to the NA-ACCORD analyses, a
grace period of m=6months was used.
Table II. Differences between the technical details of the ART-CC and NA-ACCORD analyses.

ART-CC analysis NA-ACCORD analysis

ximmediate versus xdefer ximmediate versus xdefer
550 vs. 450 >500 vs. <500
525 vs. 425 500 vs. 350
500 vs. 400, …
200 vs. 100
Excluded patients who died in first 2weeks of ART Did not exclude patients who died
Added 50% of the mean time between visits to patients’
last visit

Did not add time to patient’s last visits

Administratively censored after 6 years Did not administratively censor
Excluded IDU; analyzed separately in secondary analysis Included IDU; included as covariate in secondary

analysis
CD4 had to be measured within m’= 3months of ART
initiation to qualify

Had to start ART within m = 6months of CD4 to
be in adherence

Did not incorporate covariates Adjusted for CD4 at entry, age, and sex in primary
analysis

Non-informative censoring implicitly assumed for
patients lost to follow-up

Inverse probability of censoring weights for
patients lost to follow-up

No stratification Analyses stratified by site and year of entry
Time left continuous Time discretized

Bold text indicates the detail chosen for analyses that kept technical details constant across approaches (reported in
Figure 3).
ART, antiretroviral therapy; IDU, injection drug users.



Inverse probability weights were used to account for potential bias that may have been induced by
artificial censoring. Each subject’s time-varying weight was the inverse predicted probability of them
not being artificially censored from a particular treatment rule. Artificial censoring only occurred when
a patient started or failed to start ART. Therefore, the probability of not being artificially censored for a
given rule was simply the probability of starting/not starting ART conditional on not yet starting ART
and time-updated covariates, including CD4 count. During a grace period (e.g., for the immediate ther-
apy arm, the first 6months after which a CD4 count drops below ximmediate) the probability of being cen-
sored was 0; following [12], our weights during the grace period were chosen to be consistent with rules
that the distribution of the time of starting ART within the grace period was roughly uniform. Weights
were multiplied together in the standard manner [28]. The probability of starting ART conditional on not
yet being on ART and covariates was estimated using logistic regression in the complete, non-replicated
data. The logistic regression model included the most recent CD4 measurement, sex, site, age at time 0,
calendar year at time 0, and months since time 0 expanded using restricted cubic splines with four knots.
These covariates were used in the NA-ACCORD study and were chosen because of their availability and
to minimize confounding.

Loss to follow-up was defined in all analyses as no clinic visit (including laboratory measurement)
within 1 year of the database closing date, defined as the most recent visit date for each cohort. Censor-
ing for lost patients occurred at the last visit date. In NA-ACCORD analyses, inverse probability of cen-
soring weights were incorporated to account for possible bias due to LTFU. The probability of being
LTFU conditional on not yet being lost and covariates was estimated using logistic regression with
the complete, non-replicated data. The logistic regression models included the most recent CD4 mea-
surement, sex, site, age at time 0, calendar year at time 0, whether or not a patient was on ART during
that month, and months since time 0 expanded using restricted cubic splines with four knots. Weights
were the inverse of the predicted probability of not being LTFU, multiplied together in the standard
manner.

Stabilized weights can be constructed for dMSMs with grace periods, but they are somewhat compli-
cated, and their benefits are uncertain [12]. Therefore, in our analyses, we used unstabilized weights. To
avoid extreme weights due to near violations of the positivity assumption, in primary analyses, we trun-
cated our weights at the 99th percentile (i.e., any weight larger than the 99th percentile was assigned to
the 99th percentile). This truncation level was arbitrary, but chosen a priori; the sensitivity of results to
different truncation levels was explored by considering estimates with truncation at the 95th, 97.5th, and
99.5th percentiles, as well as no truncation [28].

Weighted pooled logistic regression was used to estimate the effect of immediate versus deferred ther-
apy. Initial analyses based on the technical details of the NA-ACCORD analysis incorporated the covar-
iates CD4 at time 0, age at time 0, and sex. NA-ACCORD analyses were also stratified by site and
calendar year; our logistic regression models included months since time 0 (expanded using restricted
cubic splines with four knots), site, and calendar year (kept continuous). (Stratification in a Cox model
typically implies assuming separate baseline hazards for stratification variables, which for pooled logis-
tic regression corresponds to including an interaction between months since time 0 and the stratification
variables. Such a model was computationally infeasible, so we simply adjusted for the stratification
variables.) In sensitivity analyses, we investigated the impact of the technical details on estimates by
perturbing them one at a time from a base model (shown in bold in Table II). Standard errors were
computed using robust, sandwich variance estimators.

Our analyses were not an attempt to exactly mimic those of the NA-ACCORD given specific imple-
mentation criticisms [7], subsequent methodological developments [11,12], and uncertainties regarding
the original analyses (e.g., it is unclear whether truncated weights were used in the NA-ACCORD
analysis). Our definition of LTFU differed from that used by either cohort, although it was consistent
between analyses; a sensitivity analysis examined the impact of defining LTFU as a gap in care of
>1year [29]. The supporting information contains an example, including intermediary model results,
for deriving estimates under the MI and dMSM approaches.
3.3. Analyses holding technical details constant

We performed an additional set of analyses holding many technical details constant between the MI and
dMSM approaches; the selected details for these analyses are shown in bold in Table II. In these anal-
yses, we did not include weights for LTFU, incorporate covariates (not in our weighting model nor in
our outcome model), or stratify by site and year of entry. For the MI approach, time in the augmented



data was discretized into 30-day intervals, and we used pooled logistic regression to approximate hazard
ratios [27]. For these specific analyses, we computed the difference between estimates (on the logarith-
mic scale) from the MI and dMSM approaches and obtained 95% Wald confidence intervals (CIs) using
the standard error estimated from 200 bootstrap replications; the ratio of the hazard ratios was estimated
by exponentiating this log-difference. Five imputation replications were used for the MI approach inside
each bootstrap replication.

4. Results

4.1. CNICS and VCCC cohorts

The CNICS and VCCC cohorts have been described elsewhere [30,31]. Briefly, the combined dataset
included 12,708 patients from nine primarily urban clinics in the USA (Baltimore, Birmingham, Boston,
Cleveland, Nashville, Raleigh, San Diego, San Francisco, and Seattle). The combined cohort was 79%
male, 40% were African American, and 17% were likely infected through injection drug use. The me-
dian age at entry was 36years (interquartile range [IQR] 29–43years), the median follow-up was
3.4 years (IQR 1.2–6.7), and the median CD4 at clinic entry was 380 (IQR 213–569). Approximately
76% of patients initiated ART sometime during their follow-up. The median CD4 at start of ART was
294 (IQR 150–438), and the median time from clinic entry until ART start for those who started ART
was 3months (IQR 1–17months). CD4 was measured on average every 3–4months at each site.

In the combined cohorts, 1817 patients had at least one AIDS-defining event, and 1499 patients died
during follow-up. Figure 1 shows the association between CD4 at ART initiation and death or the
composite outcome of AIDS/death. Persons who started ART with a lower CD4 were more likely to
experience events; trends are clear for CD4 less than approximately 400 but less clear above 400. As
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Figure 1. Association between CD4 at antiretroviral therapy (ART) initiation and death (top panels) and
AIDS/death (bottom panels). The left panels show Kaplan–Meier estimates after ART initiation by CD4 strata;
the right panels show the log-hazard of event (and 95% confidence intervals) as a function of CD4 at ART
initiation, estimated from a Cox proportional hazards model with CD4 expanded using restricted cubic splines

with seven knots.



mentioned previously, because of potential confounding and lead time bias, these results may be
misleading if interpreted as evidence for an optimal time to start ART.
4.2. Results using multiple imputation and dynamic marginal structural model approaches

Figure 2 shows estimated hazard ratios using the MI and dMSM approaches, implemented using tech-
nical details similar to those of the ART-CC and NA-ACCORD analyses (outlined in Table II). For both
the mortality and AIDS/mortality composite endpoint, the MI approach suggested that it is better to start
ART while CD4 is in the range 101–200 compared with 0–100 and that starting in the range 201–300 is
better than starting between 101 and 200, with positive hazard ratios and 95% CI that did not include the
null of 1. In contrast, there was little evidence with the MI approach to conclude that starting with CD4
ranging from 201 to 300 is worse than starting at 301–400 or that 301–400 is worse than 401–500. The
dMSM of the NA-ACCORD analysis compared different CD4 strata (<500 vs. <350 and <500 vs.
≥500); for both comparisons, with our data, CIs were wide and crossed 1. For purpose of comparison,
the corresponding hazard ratios reported in the ART-CC and NA-ACCORD papers are also shown in
Figure 2. Our hazard ratio estimates tended to be smaller than those of both studies and more variable,
particularly when compared with those reported in the NA-ACCORD analysis.

We next performed analyses holding technical details constant across approaches. Selected details are
bolded in Table II. It is important to note that in many cases, our analysis choices were not based on HIV
medicine but rather ease of performing the analysis under both techniques. For example, the dMSM
approach requires discretizing time, and the MI approach does not incorporate baseline covariates.
The primary purpose of this analysis is to compare results, not necessarily to choose the optimal CD4
for ART initiation.

Figure 3 shows the results of both analysis methods holding technical details constant. The top row
shows the estimated hazard ratio for both methods for each comparison; the bottom row directly com-
pares the two approaches by showing the ratio of the hazard ratios for each comparison and 95% boot-
strap CIs. Point estimates were not identical but generally tended to be of similar magnitude. The
exception was the comparison of the thresholds 400 vs. 300 for the composite AIDS/death outcome,
where the dMSM approach resulted in a larger hazard ratio (favoring starting at 400) than that of the
MI approach, and the 95% CI of the ratio of the hazard ratios did not include 1. The hazard ratio
Hazard Ratio, MI Approach

0−100 vs. 101−200

101−200 vs. 201−300

201−300 vs. 301−400

301−400 vs. 401−500

0−100 vs. 101−200

101−200 vs. 201−300

201−300 vs. 301−400

301−400 vs. 401−500

Hazard Ratio, dMSM Approach

0.3 0.5 1 2 3 0.3 0.5 1 2 3

<350 vs. <500

<500 vs. >=500

Death

AIDS or Death

Figure 2. Estimated hazard ratios and 95% confidence intervals for deferring antiretroviral therapy (ART) versus
immediate ART (reference) at the given CD4 thresholds/ranges using the multiple imputation (MI) approach (left
panel) and the dynamic marginal structural model (dMSM) (right panel). The top and bottom rows correspond to
estimates with death and the first of AIDS or death, respectively, as the endpoint. Technical details are similar to
those of the ART-CC and NA-ACCORD analyses. The gray lines are estimates from the original publications.
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Figure 3. Top row: estimated hazard ratios and 95% confidence intervals (CIs) for the deferred versus the imme-
diate (reference) arms at CD4 thresholds using the multiple imputation (MI) (black) and dynamic marginal struc-
tural model (gray) approaches while holding technical details constant (described in Table II). Outcomes are
death (left column) and first of AIDS or death (right column). Bottom row: estimated ratios of hazard ratios

and 95% CI, with the MI approach as the reference.
comparing 300 vs. 200 for the composite endpoint also tended to be higher for the dMSM approach, al-
though the 95% CI of the ratio of the hazard ratios for this comparison included 1. CIs were wider using
the dMSM approach. For the AIDS/death outcome, both methods suggested that it is better to start be-
fore CD4 drops at or below 300 than 200 (and 200 before 100). With death as the outcome, the MI ap-
proach yielded the same conclusion, whereas with the dMSM approach, CIs included 1. For comparing
thresholds of 400 vs. 300, the MI approach actually favored starting when CD4 first drops below 300,
whereas such a conclusion would not be supported by the dMSM analysis.

Figure 4 demonstrates the sensitivity of results to changes in technical details with death as the outcome.
The topmost row of the top panel shows the basic analysis for the MI approach, using the same technical
details used in Figure 3 except with continuous, not discrete time. The following rows show estimates after
varying one of the technical details. For example, estimates in the second rowwere derived using the same
technical details as those in the first row except excluding any deaths that happened within 2weeks of
ART initiation; estimates in the third row were derived in the same manner as those in the first row except
that 2months were added to the follow-up time of those without death; and so forth. The bottom panel pro-
vides similar information for the dMSM approach (with the topmost row being identical to the hazard ratio
estimates of Figure 3). From this plot, we can see that the technical details influenced estimates, and gen-
erally more so for the dMSM approach particularly when the grace period for starting ART changed from
6 to 3months. However, the impact of any one technical component was generally minor.

Finally, the dMSM approach uses inverse probability weights that, in practice, are often truncated to
avoid unstable estimates. Our analyses truncated weights at the 99th percentile. The sensitivity of results
to this choice is illustrated in Figure 5. Although largely similar across truncation levels, estimates and
CIs were influenced by the choice of truncation percentile with the direction of point estimates changing
for some comparisons.
5. Simulations

We performed a limited set of simulations to assess whether we could estimate the optimal CD4 thresh-
old, and obtain similar estimates, using the MI and dMSM approaches when the truth was known and
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Figure 4. Sensitivity of mortality results (hazard ratio estimates and 95% confidence intervals) to technical de-
tails. The upper panel is the multiple imputation (MI) approach, and the bottom panel is the dynamic marginal
structural model (dMSM) approach. The basic model for the MI approach is identical to that in bold in
Table II except time is left continuous. The basic model for the dMSM approach is identical to that described in

Table II.
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Figure 5. Sensitivity of mortality results (hazard ratio estimates and 95% confidence intervals) obtained using
the dynamic marginal structural model approach to different choices for truncation percentile for the weights.
These models incorporate covariates and weights for loss to follow-up but otherwise keep all technical details

the same as those in bold in Table II.
with properly specified models. In our simulations, we generated data under three different scenarios in
which the optimal time to initiate ART was when CD4 dropped below approximately 700, 500, and 350.
In each scenario, we simulated CD4, ART use (yes/no), and event status at 3-month intervals for up to



10years of follow-up for 15,000 patients; this was repeated for 500 simulation replications. CD4 was set
to decline when a patient was not on ART and increase during ART use (quickly at first and plateauing
later). The probability of starting ART was simulated such that it was higher for lower CD4. Events were
also simulated such that their probability was higher at lower CD4. To simulate data under different op-
timal CD4 thresholds for initiating ART, we allowed the event probability to increase with increasing
time on ART. The 10-year survival probability as a function of different CD4 thresholds for starting
ART for the three different data generation scenarios is shown in Figure 6A. Simulation details regard-
ing data generation and analysis are in the supporting information. The complete code is posted at http://
biostat.mc.vanderbilt.edu/ArchivedAnalyses

With each of the 500 simulation replications for each of the three data generation scenarios, we ob-
tained estimated hazard ratios and 95% CI comparing various ART initiation rules using both the MI
and dMSM approaches. Figure 6B summarizes these quantities across all simulation replications and
scenarios. The average hazard ratio (exponential of the mean log-hazard ratio) and average CI width
(exponential of the mean log-hazard ratio plus/minus half the average width of the log-HR’s 95% CI)
are plotted. Note that the quantities plotted in the figure are not point estimates and CIs, but rather
summaries of point estimates and the width of CIs across simulation replications.

In general, estimates from the MI and dMSM approaches were in harmony with the underlying data
generation mechanism. Hazard ratios tended to be greater than 1 for all comparisons of adjacent CD4
thresholds (with the higher threshold as the reference) when data were generated such that the optimal
CD4 for initiating ART was 700. When data were generated with the optimal CD4 of 500, HR estimates
tended to be greater than 1 comparing thresholds below 500 and then approximately 1 thereafter. When
data were generated with the optimal CD4 of 350, HR tended to be above 1 for comparisons below 350
and below 1 for comparisons above the 350. These results are as would be expected from Figure 6A.

Confidence intervals from the dMSM approach tended to be wider than those using the MI approach.
For the MI approach, the mean standard error tended to be slightly larger than the standard deviation of
the estimates, particularly for comparisons with the lower CD4 thresholds (supporting information). This
suggests that CIs for the MI approach were actually conservative. For the dMSM approach, the mean
standard error was similar to the standard deviation of estimates except for comparisons of 600 vs.
700 and 550 vs. 650 in the data generation scenario with the optimal CD4 of 700, where the mean stan-
dard error (0.66 and 0.55) was smaller than the standard deviation of estimates (0.81 and 0.64); as seen
in Figure 6A, there are very few events at higher CD4 levels under this data generation scenario, so the
poor performance of the dMSM standard errors based on large sample theory is not particularly
surprising.

Estimates from the MI and dMSM approaches applied to the same dataset tended to be fairly similar.
Figure 6C shows the ratio of the hazard ratios for the 500 simulations (specifically, the exponential of the
mean difference between the log estimates ±1.96 times its standard deviation). The discrepancy between
the MI and dMSM estimates was more variable when examining the larger CD4 thresholds that had
fewer events, but on average, results were very similar with the average ratio of the hazard ratios close
to 1.

These simulations were designed such that there were no confounders, so that both methods were cor-
rectly specified. Certainly, performance of the methods would be worse under improperly specified
models.

6. Discussion

We applied two separate methods for estimating when to start ART to a single dataset holding technical
details constant. The methods applied were an MI approach [4] and a dMSM [5] and were the basis of
conflicting results in two highly publicized prior studies [6,7]. When applied to the same dataset with
technical details held constant, the two methods produced fairly similar results with largely overlapping
CIs. However, for certain comparisons, conclusions may have differed depending on the method
employed (Figure 3). The MI approach generally resulted in narrower CIs, which may be due in part
to the use of additional external data but may also be due to the dMSM’s stricter inclusion criteria
and use of artificial censoring. When applied to large simulated datasets, results were also similar be-
tween the MI and dMSM methods, although in any single simulation, estimates could be somewhat dif-
ferent between approaches.

As highlighted in Section 2.3, there are differences between the two methods that might lead to dif-
ferent answers even when applied to data from the same cohort. First, there are differences between
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Figure 6. (A) Ten-year survival probability for initiating antiretroviral therapy when CD4 drops below the given
CD4 threshold for three data generation scenarios. The optimal CD4 count (with maximal 10-year survival prob-
ability) is approximately 700, 500, and 350 for the various data generation scenarios. (B) The average hazard ra-
tio (exponential of the mean log-hazard ratio) and average confidence interval width (exponential of the mean
log-hazard ratio plus/minus half the average width of the log-hazard ratio’s 95% confidence interval) when ap-
plying the multiple imputation (MI) (black) and dynamic marginal structural model (gray) approaches to 500
simulation replications under the three data generation scenarios. (C) Ratio of the hazard ratio, with the MI ap-
proach as the reference: exponential of the mean difference of the log-hazard ratios ±1.96 standard deviations.
the two approaches’ estimands. The dMSM method addresses a more clinically relevant, and therefore
preferable, estimand.

Second, there are differences between the two approaches’ assumptions. Both approaches make as-
sumptions of no unmeasured confounders. However, the MI analysis makes no attempt to incorporate
potential confounding variables. In contrast, the MI approach only assumes no unmeasured confound-
ing at time 0, whereas the dMSM approach assumes no unmeasured confounding at all time points.



The MI approach also assumes that historical data from the pre-ART era accurately capture CD4
changes and rates of events among persons who do not start ART. This is potentially a strong as-
sumption and could be violated by differences over time in the circulating virus, temporal differences
in care of patients not on ART, and cohort heterogeneity (the pre-ART historical data were a mix of
North American and European cohorts; the CNICS and VCCC cohorts are US cohorts). In essence,
the two approaches are filling in lead time with different sets of data, so it is not surprising that
the two approaches obtain different results. The MI approach used pre-ART era data, whereas the
dMSM approach used data from patients in the study before they started ART. For this reason, the
dMSM approach might be favored. However, there are certainly differences between patients who
start and delay starting ART – the dMSM approach attempts to control for these differences using in-
verse probability weighting – and the validity of this approach comes down to correctly incorporating
all confounders. In contrast, in the pre-ART era, nobody started ART, so there may be less selection
bias as the entire cohort is used to estimate lead times. In addition, the dMSM approach requires
discretization of time, which may result in some information loss (although apparently not too much
in our analysis) and extra effort preparing data for analysis. It is worth mentioning, however, that the
choice of the time unit is somewhat arbitrary, and setting aside computing time, we could have
discretized time to weeks or even days to minimize its impact.

While both statistical methods were novel, the MI approach was specifically designed for the when-
to-start ART question and appears less widely applicable given that in many settings, historical data
may not be available. In contrast, the dMSM and subsequent modifications appear more applicable
across a wide range of scientific problems. With that said, the MI approach was more efficient and
seemed to be less sensitive to arbitrary analysis decisions, suggesting there may be some benefits
to extensions that might make it more applicable. Possible extensions of the MI approach to estimate
a causal parameter similar to that of the dMSM approach and to permit imputation without using his-
torical data and to incorporate covariates would be worthwhile. Although dMSMs appear to be the
preference for selecting optimal dynamic regimes, it is important to recognize their limitations, some
of which have been seen in our application. dMSMs are complicated and require substantial data as-
sembly; simple coding mistakes and arbitrary choices like at what level to truncate weights can sig-
nificantly impact results – sensitivity analyses are therefore important. Large sample sizes are also
needed to have reasonable precision, and the assumption of no unmeasured confounders is often
questionable.

Both of these methods could be used to estimate metrics other than the hazard ratio for comparing
treatment initiation rules. Alternative estimands could include contrasts of the predicted survival at
specific times after study entry or survival quantiles. It should also be recognized that a better way
to select the optimal CD4 count for starting ART would be to simultaneously compare multiple treat-
ment rules, rather than to perform multiple pairwise comparisons as performed in this study and the
original publications/methods. For example, one could estimate the predicted survival probability at
5 years for different CD4 initiation thresholds (e.g., 200–700 in 10-unit increments) and then select
the CD4 with the highest predicted survival as the optimal CD4 for starting ART [11,12,15]. It might
also be preferable to compare all CD4 initiation thresholds with a single reference threshold, rather
than with adjacent thresholds, as performed in this study. Our decision to present hazard ratios for
pairwise comparisons with adjacent CD4 thresholds was based on our desire to keep the analyses
as consistent as possible with those of the original publications. There are other methodological ap-
proaches that also could have been employed. The parametric g-formula is well suited for investigat-
ing dynamic treatment regimes [32,33], and its use for estimating the optimal CD4 to initiate ART has
been demonstrated [13]. Targeted maximum likelihood estimation has also been used in similar prob-
lems [10,34,35]. More generally, there is a rapidly growing literature on the estimation of optimal dy-
namic treatment regimes (e.g., [36–38]).

Our results are neither an indictment nor an endorsement of the analyses presented by the ART-CC
and NA-ACCORD [6,7]. The purpose of this study was not to validate either analysis or to come up with
yet another estimate of when to start ART using observational data. As a final aside, this exercise high-
lights the importance of reproducible research [39]. From the original papers, it is impossible to deduce
all analysis decisions necessary to exactly replicate the methods employed. In this era of web-based sup-
plements, it is easy to post analysis code so that analyses are transparent – even when the data cannot be
made publically available. Although posting one’s code takes a bit of courage as it may reveal subopti-
mal coding and even errors, we believe that such a step is important for assessing scientific methodology
and results, and ultimately, medical research.
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