
Background: When accounting for misclassification, investigators 
make assumptions about whether misclassification is “differential” 
or “nondifferential.” Most guidance on differential misclassification 
considers settings where outcome misclassification varies across 
levels of exposure, or vice versa. Here, we examine when covariate-
differential misclassification must be considered when estimating 
overall outcome prevalence.
Methods: We generated datasets with outcome misclassification 
under five data generating mechanisms. In each, we estimated preva-
lence using estimators that (a) ignored misclassification, (b) assumed 
misclassification was nondifferential, and (c) allowed misclassifica-
tion to vary across levels of a covariate. We compared bias and pre-
cision in estimated prevalence in the study sample and an external 
target population using different sources of validation data to account 
for misclassification. We illustrated use of each approach to estimate 
HIV prevalence using self-reported HIV status among people in East 
Africa cross-border areas.
Results: The estimator that allowed misclassification to vary across 
levels of the covariate produced results with little bias for both popu-
lations in all scenarios but had higher variability when the validation 
study contained sparse strata. Estimators that assumed nondifferential 
misclassification produced results with little bias when the covariate 
distribution in the validation data matched the covariate distribution 
in the target population; otherwise estimates assuming nondifferen-
tial misclassification were biased.
Conclusions: If validation data are a simple random sample from 
the target population, assuming nondifferential outcome misclas-
sification will yield prevalence estimates with little bias regardless 

of whether misclassification varies across covariates. Otherwise, 
obtaining valid prevalence estimates requires incorporating covari-
ates into the estimators used to account for misclassification.
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Misclassification abounds in epidemiologic studies. 
Numerous methods exist to account for misclassifi-

cation in estimates of prevalence and associations between 
exposures and outcomes.1–6 Such methods often require the 
investigator to make assumptions about whether misclassi-
fication is “nondifferential” or “differential.” When estimat-
ing associations between exposures and outcomes, the term 
differential is often used to imply that study design features 
create an expectation that the probability of misclassifying 
the outcome may differ by exposure status, or vice versa.7–9 
However, when estimating prevalence in a single sample (i.e., 
not stratified by exposure), misclassification probabilities may 
also differ across levels of other variables, some of which are 
predictors of the outcome.

In this work, we consider settings in which such covari-
ate-differential misclassification is important to consider 
when estimating prevalence. We consider this problem in two 
dimensions: First, because many methods to account for mis-
classification rely on estimates of sensitivity and specificity 
from validation data, we explore scenarios where the distri-
bution of covariates in the validation data are similar to, and 
different from, the main study data. Second, because we gen-
erally would like our study results to allow us to make infer-
ence to larger or different target populations, we also explore 
the performance of approaches to account for measurement 
error when transporting study results.

As a motivating example, consider estimation of HIV 
prevalence in the East Africa Cross-Border Integrated Health 
Study,10 where we were interested in estimating HIV preva-
lence in both the study sample (thought to be representative 
of people socializing in cross-border areas) as well as a popu-
lation composed of people socializing in cross-border areas 
who could be reached by a specific outreach program. In this 
example, the age distribution of those in the study sample was 
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thought to differ substantially from the age distribution in the 
target population for the program. Self-reported HIV status 
is often used as a proxy for HIV serostatus11 to simplify data 
collection, but is subject to error if patients are unaware of, or 
reticent to accurately report, their serostatus.12–15 This report-
ing error may be associated with age if younger individuals 
were more recently infected on average and therefore had less 
time to receive an HIV diagnosis before the study.

In a series of simulation experiments, we explore bias 
and precision in estimated outcome prevalence using esti-
mators that hold sensitivity and specificity constant a cross 
levels of covariates and using estimators that allow sensitiv-
ity and specificity to vary. We explore how performance of 
each estimator is affected by t he s ource o f validation d ata 
available to inform the estimators and the target population 
of interest.

PART 1. EXAMPLE

Methods
We illustrate the choices about when to allow misclas-

sification probabilities to vary across levels of covariates when 
estimating HIV prevalence using self-reported HIV status 
from the 2016 East Africa Integrated Health Study. This study, 
described in detail elsewhere,10,16,17 is a population-based, 
cross-sectional study of a wide array of health outcomes in 14 
survey sites in cross-border areas in Kenya, Uganda, Tanzania, 
and Rwanda conducted between June 2016 and February 
2017. Of the selected sites, eight were land border sites, which 
included the area around international border posts on high-
ways, and six were lake border sites, which included fishing 
villages on Lake Victoria that served as points of commerce 
for fisher folk from multiple East African countries. The study 
included a bio-behavioral survey among a sample of people 
patronizing or working in public venues in cross-border areas 
sampled and recruited using the Priorities for Local AIDS 
Control Efforts method.18

The survey asked participants about past HIV testing 
and test results. We considered a participant to have a positive 
self-reported HIV status if they reported that they had received 
a positive HIV test result either in face-to-face interviews or 
in the portion of the survey where participants recorded their 
responses directly on study tablets. All participants (includ-
ing those reporting a prior positive result) were offered a 
rapid HIV test at the time of the interview. Participants with 
a positive rapid test were linked to a local health facility for 
confirmatory testing and HIV care. The study was approved 
by ethical review boards in each country and the institutional 
review board at the University of North Carolina Chapel Hill.

For this analysis, we included the 9,872 participants 
who consented to the rapid HIV test and provided a self-
reported HIV status (89% of the 11,112 survey participants). 
We considered the HIV rapid test as the gold standard mea-
surement and the “true” HIV prevalence to be the proportion 

 

of participants with a reactive HIV rapid test. Self-reported 
HIV status was the error-prone outcome examined. We antic-
ipated that the sensitivity and specificity of self-reported 
HIV status might vary by age. To explore the importance of 
accounting for differential misclassification, we sampled two 
hypothetical validation studies from the main study sample 
(Table 1). Validation sample 1 was a simple random sample 
of size 5,000 of the main study data. Validation sample 2 
also had 5,000 participants but included a greater proportion 
of participants over age 30 than the main study data. Such 
differences in the age distribution could arise if older indi-
viduals were more likely to agree to participate in the valida-
tion study or if investigators oversampled those over age 30, 
thought to be at higher risk of HIV, to improve precision of 
the estimate of overall sensitivity. Because validation studies 
were hypothetical (i.e., performed by sampling from the full 
dataset, with sampling probabilities chosen by the investiga-
tors), we knew that the probability of inclusion in validation 
sample 2 was affected only by age (and not other covariates).

We estimated HIV prevalence in the sample and the 
external target population thought to represent the popula-
tion of interest for a hypothetical HIV prevention program. 
The population of interest for the hypothetical program was 
thought to differ from the study sample with respect to age 
only, such that 85% of people in the external target popula-
tion were over 30 compared with 38% in the study sample. 
We applied four estimators of prevalence, described in depth 
below: (0) a full-data analysis, which used true HIV status for 
all participants (in most settings, the gold standard outcome 
is unobserved or partially observed19; this analysis is pro-
vided here as a comparison for the other methods); (1) a naive 
analysis that used self-reported HIV status as the outcome; 
(2) an analysis that accounted for misclassification assuming
misclassification is nondifferential; and (3) an analysis that
accounted for misclassification assuming misclassification
varied by age. We repeated analyses 2 and 3 using both valida-
tion samples to estimate sensitivity and specificity. Except for
the full-data analysis, we ignored the gold standard exposure
and assumed that only the error-prone exposure was available
outside of the validation sample. We used the nonparametric
bootstrap in which we resampled both main study and valida-
tion sample data 500 times to construct 95% confidence inter-
vals (CIs) around prevalence estimates.

Estimators
Let Y  represent true HIV status, s be an indicator of 

inclusion in the study sample (s = 1) or the external target 
population (s = 2), and Z  represent age category (over 30 vs. 
30 or under). In settings with no misclassification, an unbi-
ased estimator of HIV prevalence in the study population, 
P(Y = 1|s = 1), is

µ̂ 0,s=1 =
1
n

n∑
i=1

Yi,



where the subscript (0, s = 1) indicates that this is “estimator 
0” of prevalence in the study sample s = 1, and i = {1, . . . , n} 
indexes participants in the main study sample. Assuming that 
Y  is independent of s given Z 20, HIV prevalence in the exter-
nal target population P(Y = 1|s = 2) may be consistently
estimated by

µ̂ 0,s=2 =
∑
z

{
P̂ (Y = 1 | Z = z, s = 1) P̂ (Z = z|s = 2)

}
.

In settings with misclassification, we observe some 
potentially mismeasured version of the outcome Y∗ (here, 
self-reported HIV status) in place of the gold standard mea-
surement Y  (here, HIV rapid test result). It is common to 
ignore misclassification and estimate outcome prevalence 
P(Y = 1|s = 1) using the measured outcome indicator Y∗ as

µ̂ 1, s=1 =
1
n

n∑
i=1

Y∗
i

and P(Y = 1|s = 2) as

µ̂ 1,s=2 =
∑
z

{
P̂ (Y∗ = 1 | Z = z, s = 1) P̂ (Z = z|s = 2)

}
.

Here, we focus on estimators that use sensitivity 
P (Y∗ = 1 | Y = 1) and specificity P(Y∗ = 0|Y = 0) to
account for misclassification. When we have estimates of sen-
sitivity and specificity and misclassification is not extreme 
(i.e., sensitivity + specificity > 1), a simple approach can be 
used to account for nondifferential misclassification using the 
observed outcome prevalence, sensitivity, and specificity,

µ̂ 2, s=1 =
P̂ (Y∗ = 1 | s = 1) + ŝp− 1

ŝe+ ŝp− 1
,

where P̂ (Y∗ = 1 | s = 1) = 1
n

n∑
i=1

Y∗
i , ŝe is the estimated 

sensitivity of the outcome measure, and sp̂ is the estimated 
specificity of the outcome measure.21 As above, this estimator 
can be extended to estimate P (Y = 1 | s = 2) using

µ̂ 2,s=2 =

∑
z

{
P̂ (Y∗ = 1 | Z = z, s = 1) + ŝp− 1

ŝe+ ŝp− 1
P̂ (Z = z|s = 2)

}
.

When sensitivity and specificity are thought to be dif-
ferential across values of a covariate Z , this tabular approach 
can be extended:

µ̂ 3, s=1 =

∑
z

{
P̂ (Y∗ = 1 | Z = z, s = 1) + ŝp z − 1

ŝe z + ŝp z − 1
P̂ (Z = z | s = 1)

}
,

where sez  and spz represent sensitivity and specificity for 
individuals within stratum z. As above, this estimator can also 
be extended to estimate P(Y = 1|s = 2) using

µ̂ 3, s=2 =

∑
z

{
P̂ (Y∗ = 1 | Z = z, s = 1) + ŝp z − 1

ŝe z + ŝp z − 1
P̂ (Z = z|s = 2)

}
.

Example Results
Of the 9,872 participants included in the analysis, 462 

tested positive for HIV on the rapid test and 223 self-reported 
that they had HIV. Sensitivity of self-reported HIV status as a 
proxy for a positive rapid test was 37% in the sample overall, 
and specificity was 99%. Specificity was similar across age 
groups, but sensitivity was 28% among those 30 or younger 
and 45% among those older than 30.

Using validation dataset 1 (a random draw of the main 
study data), we estimated that overall sensitivity was 36% 
(95% CI = 29, 42) and overall specificity was 99% (95% CI = 
99, 100). When we stratified by age, we observed that sensitiv-
ity was lower for those 30 or younger (28%; 95% CI = 20, 37) 
than those over 30 (43%; 95% CI = 34, 52), and >99% speci-
ficity for both groups. Estimated sensitivity and specificity are 
similar to the true values reported above, though differ slightly 
due to sampling error.

TABLE 1. Counts of Participants and Proportion Reporting HIV by Age and Gold Standard HIV Status in the East Africa Cross-
Border Integrated Health Study Sample and Two Hypothetical Validation Samples

Data Source

Age ≤ 30 Age > 30 Overall

No HIV, n (%) HIV, n (%) No HIV, n (%) HIV, n (%) No HIV, n (%) HIV, n (%)

Study samplea

No self-reported HIV 5,851 (99.5) 151 (72.2) 3,507 (99.4) 140 (55.3) 9,358 (99.4) 291 (63.0)

 Self-reported HIV 32 (0.5) 58 (27.8) 20 (0.4) 113 (44.7) 52 (0.6) 171 (37.0)

Validation dataset 1

No self-reported HIV 2,974 (99.5) 79 (71.8) 1,775 (99.4) 67 (57.3) 4,749 (99.5) 146 (64.3)

Self-reported HIV 14 (0.5) 31 (28.2) 10 (0.6) 50 (42.7) 24 (0.5) 81 (35.7)

Validation dataset 2

No self-reported HIV 1,215 (99.4) 28 (66.7) 3,464 (99.4) 139 (55.2) 4,679 (99.4) 167 (56.8)

Self-reported HIV 7 (0.6) 14 (33.3) 20 (0.6) 113 (44.8) 27 (0.6) 127 (43.2)

aResults are italicized because we would typically not observe the gold standard outcome in the entire study sample.



Using validation dataset 2 (which oversampled older 
participants), overall sensitivity was 43% (95% CI = 38, 49) 
and overall specificity was 99% (95% CI = 99, 100). When 
we stratified by age, estimated sensitivity and specificity were 
similar to validation dataset 1 with 33% sensitivity among 
those 30 and under (95% CI = 19, 48), 45% sensitivity among 
those over 30 (95% CI = 39, 51), and >99% specificity for 
both groups.

Using the (often unavailable) gold standard measure-
ment for all participants, estimated HIV prevalence was 4.7% 
(95% CI = 4.3, 5.1) in the study population and 6.2% (95% CI 
= 5.7, 6.7) in the external target population (Table 2). Using 
self-reported HIV status rather than the HIV rapid test, esti-
mated HIV prevalence was 2.3% (95% CI = 2.0, 2.6) in the 
study sample and 3.2% (95% CI = 2.9, 3.6) in the external 
target population.

When we accounted for measurement error but 
assumed misclassification was nondifferential with respect 
to age, the validity of our results depended on the source of 
validation data used. We estimated that HIV prevalence in 
the study sample was 5.0% (95% CI = 3.6, 6.4) when using 
validation dataset 1, which had a similar distribution of 
age as the study sample, but only 4.0% (95% CI = 2.9, 5.0) 
when using validation dataset 2, which oversampled those 
over 30. Conversely, our estimate of HIV prevalence in the 
(older) external target population was high at 7.7% (95% CI 
= 5.7, 9.7) when using validation dataset 1 but 6.2% (95% 
CI = 4.6, 7.8) when using validation dataset 2. When we 
accounted for misclassification assuming it was differential 
by age (i.e., when we calculated sensitivity and specificity 
separately for those age 30 and under and for those over 
30), estimated values of HIV prevalence were near the true 
values regardless of the source of the validation data or the 
target population.

PART 2. SIMULATION EXPERIMENTS
To demonstrate when one will need to account for dif-

ferential misclassification to accurately estimate prevalence, 
we evaluated bias and precision of estimators µ 0 to µ 3 under 
4 illustrative data generating mechanisms.

Methods
Parameter

The parameters of interest are the prevalence of binary 
outcome Y  in 2 distinct target populations: the population rep-
resented by the study sample P(Y = 1|s = 1) and in an exter-
nal target population P(Y = 1|s = 2).

Misclassification Scenarios
Here, we consider four misclassification scenarios. In 

scenario A, observed outcome Y∗ is affected only by Y  and its 
error εy , where εy  occurs completely at random, as shown in 
the diagram in Figure 1A. This would occur in our example 
if age affected neither true HIV prevalence nor the validity 
of self-reported HIV status as a proxy for true HIV status. In 
scenario B, εy  depends on covariate Z , but Z  does not affect 
Y  (Figure 1B). In our example, this would occur if the true 
HIV prevalence was not affected by age, but older people 
were more or less likely to correctly report their HIV status. 
In scenario C, εy  occurs completely at random but covariate Z  
affects Y  (Figure 1C). In the example, this would occur if age 
affected true HIV status but not whether one correctly reported 
his or her HIV status. In scenario D, εy  is affected by Z  and 
Z  affects Y  (Figure 1D). In our example, this would occur if 
age was associated with higher true HIV prevalence and older 
people were more likely to correctly report their HIV status. 
In scenarios B and D, misclassification varies across levels of 
Z . For reference, we also consider scenario 0 in which Z  does 
not affect Y , and Y∗ is a perfect proxy for Y  (i.e., there is no 
outcome misclassification).

Throughout, we assume (1) we observe Y∗ and Z  for 
everyone in the study sample; (2) Z  is measured without 
error; (3) conditional exchangeability of outcomes between 
the study sample and external target population, or that 
P (Y = 1 | Z, s = 1) = P(Y = 1|Z, s = 2); (4) the distribu-
tion of Z  in the external target population is known; (5) nei-
ther Y  nor Y∗ are measured in the external target population; 
and (6) we have estimates of sensitivity (se) and specificity 
(sp) from a validation sample with some distribution of Z  
that may (or may not) differ from the study sample and from 
the external target population. In some simulation settings, we 

TABLE 2. Estimated HIV Prevalence (%) Among 9,872 Participants in the East Africa Cross-Border Integrated Health Study and 
an External Target Population Using Three Approaches to Account for Measurement Error in Self-reported HIV Status

Estimator

Estimated HIV Prevalence (%) in Study 
Sample

Estimated HIV Prevalence (%) in External 
Target Population

Validation data 1 Validation data 2 Validation data 1 Validation data 2

Full dataa 4.7 (4.3, 5.1) 4.7 (4.3, 5.1) 6.2 (5.7, 6.7) 6.2 (5.7, 6.7)

Naive (µ 1) 2.3 (2.0, 2.6) 2.3 (2.0, 2.6) 3.2 (2.9, 3.6) 3.2 (2.9, 3.6)

Assuming nondifferential misclassification (µ 2) 5.0 (3.6, 6.4) 4.0 (2.9, 5.0) 7.7 (5.7, 9.7) 6.2 (4.6, 7.8)

Assuming differential misclassification (µ 3) 4.9 (3.6, 6.3) 4.3 (3.4, 6.5) 6.5 (4.7, 8.4) 6.1 (5.1, 8.0)

aResults are italicized because the “full data” estimator uses the gold standard outcome for all participants, which is typically unobserved, but presented here for comparison pur-
poses.



will assume that we have z-specific estimates of sensitivity 

(sez ) and specificity (spz).

Simulation Design
To understand when accounting for differential misclas-

sification is important to accurately estimate prevalence, we 

and P (Y
applied estimators 

= 1 s = 2
µ̂
) 
0, µ̂ 1,
 in each of the fi

µ̂ 2, and µ
v
ˆ 3 of P (Y
e scenarios described

= 1|s = 1) 
|

above in a series of simulation experiments.
We simulated m =10,000 hypothetical study samples of 

size n = 10, 000 under each data generating mechanism in the 
five scenarios described above. In simulated study samples, the 
expected outcome prevalence was 10% in scenarios A and B and 
11% in scenarios C and D, and Z  was a binary covariate with 
expected prevalence of 75%. In simulated external target popula-
tions, the expected outcome prevalence was 10% in scenarios A 
and B and 16% in scenarios C and D, and the expected prevalence 
of Z was 33%. A supplemental set of simulations (presented in 
the eAppendix; http://links.lww.com/EDE/B985) explored a sce-
nario with higher outcome prevalence in the main study sample.

Table 3 summarizes the relationships between Z  and Y 
and the misclassification probabilities in each scenario. Details 
on data generation can be found in the Supplemental Digital 
Content (http://links.lww.com/EDE/B985). In all scenarios, we 
first simulated the true outcome Y  and then set Y∗ to be the 
observed (possibly misclassified) outcome. That is, if Yi = 1,  
we set Yi

∗ = 1 with probability equal to sensitivity and if 
Yi = 0, we set Yi

∗ = 1 with probability equal to 1 – specificity.
If misclassification is differential across levels of Z , the 

overall sensitivity and specificity from a validation study will 
be a function of the prevalence of Z  in the validation sample. 
We explored the performance of the estimators described 
above when informing estimates of sensitivity and specific-
ity using eight validation studies with the same data structure 

as the main study data (i.e., identical relationships between 
Z, Y , and Y∗) but different distributions of Z  (Table 4), as 
may occur in an internal validation study with selective par-
ticipation or an external validation study drawn from a popu-
lation with a different distribution of Z . All validation samples 
had 2,000 participants. The prevalence of Z  in the validation 
samples ranged from 15% to 85% by increments of 10%. Note 
validation study 7 had the same prevalence of Z  as the main 
study sample (75%) and validation study 3 (where prevalence 
of Z  was 35%) had similar prevalence of Z  as the external 
target population (where prevalence of Z  was 33%).

Analysis of Simulated Data
For each simulated dataset under each scenario, we esti-

mated the two parameters of interest, P (Y = 1|s = 1) and
P(Y = 1|s = 2), using the four estimators described in Part 1:

1. µ̂ 0 : the full-data estimator that used the typically
unobserved value of Y  to estimate P(Y = 1). Because we 
simulated these data, Y  is available for all simulated partici-
pants and the full-data estimator can be used as a reference 
point.

2. µ̂ 1 : the naive analysis that used Y∗ in place of Y
3. µ̂ 2 : estimator that accounts for so-called nondiffer-

ential misclassification
4. µ̂ 3 : estimator that allows sensitivity and specificity

to vary by level of Z
We applied estimators µ̂ 2 and µ̂ 3 using the eight types 

of validation studies (with different distributions of Z )  
to estimate sensitivity and specificity. We report the aver-
age estimates of P̂ (Y = 1|s = 1) and P̂ (Y = 1 | s = 2) 
in each scenario using each approach across the 10,000 
simulated datasets, empirical bias (estimated by 

m−1
m∑
j=1

{
P̂ (Y = 1 | s)− P̂(Y = 1|s)

}
× 100), empirical

FIGURE 1. Diagrams describing misclassification in the study sample under 4 scenarios: A) nondifferential misclassification where 
Z does not affect Y; B) differential misclassification where Z does not affect Y; C) nondifferential misclassification where Z affects 
Y; and D) differential misclassification where Z affects Y.

http://links.lww.com/EDE/B985
http://links.lww.com/EDE/B985


standard errors (defined as the standard deviation of the esti-
mated prevalence across the simulated datasets), and root 
mean squared error (square root of bias squared plus empiri-
cal standard error squared). In addition, we provide empirical 
95% confidence intervals (CIs) as the estimate ± 1.96 times
the empirical standard error. We also report the maximum 
Monte Carlo (simulation) standard error across all scenarios 

as the maximum empirical standard error divided by 
√
m.

RESULTS
As expected, there was very little bias (<0.005 per-

centage points) in estimates from any of the estimators in 
scenario 0, where misclassification was absent (eTable 1; 
http://links.lww.com/EDE/B985) or in any scenario using 
the full-data estimator (eTable 2; http://links.lww.com/
EDE/B985).

In all scenarios with misclassification (A–D), the 
naive estimator was biased (Figure  2), estimating preva-
lence to be between 3.6 and 9.2 percentage points higher 
than the true value. Assuming misclassification was non-
differential (i.e., using µ̂ 2) produced results with little bias 
(<0.04 percentage points) in scenarios A and C, where sen-
sitivity and specificity did not vary by Z , regardless of the 
target population. When sensitivity and specificity varied by 
Z (scenarios B and D), µ̂ 2 still produced results with little 
bias if the prevalence of Z  in the validation study was simi-
lar to the prevalence of Z  in the target population (i.e., bias 

in P̂ (Y = 1|s = 1) was under 0.5 percentage points when 
using validation sample 7, and bias in P̂ (Y = 1|s = 2) was

 

under 0.6 percentage points when using validation sample 
3). Estimates produced using µ̂ 2 were biased when sensitiv-
ity and specificity varied by Z  and the distribution of Z  
differed between the validation study and the target popula-
tion, with bias ranging from 2.35 to 7.04 percentage points. 
Allowing sensitivity and specificity to vary across levels of 
Z  using µ 3 produced results with little bias (≤ 0.86 percent-
age points) for both parameters in all scenarios, regardless 
of the source of validation data.

In scenarios where misclassification was nondifferen-
tial with respect to Z  (scenarios A and C), estimators that 
allowed sensitivity and specificity to vary across levels of 
Z  had larger empirical standard errors than estimators that 
assumed nondifferential misclassification. Due to increased 
empirical standard errors, these estimators also had higher 
root mean squared error than estimators that assumed non-
differential misclassification in these scenarios (Figure  3). 
However, in settings where misclassification was differential 
with respect to Z , root mean squared error was higher for esti-
mators assuming nondifferential misclassification compared 
to those that allowed sensitivity and specificity to vary (due 
to increased bias), except for when the validation data had 
the same distribution of Z  as the target population. Notably, 
when misclassification was differential, assuming nondifferen-
tial misclassification sometimes resulted in higher root mean 
squared error than ignoring the misclassification altogether.

Patterns in results were similar under 50% outcome 
prevalence in the main study sample (eTable 3; http://links.
lww.com/EDE/B985).

TABLE 3. Values of Sensitivity and Specificity by Scenario in Simulated Datasets

Scenario Does �  Affect 
�

? Do Sensitivity and Specificity Vary by �?

Z = 1 Z = 0

Sensitivity Specificity Sensitivity Specificity

0 No No 1 1 1 1

A No No 0.70 0.90 0.70 0.90

B No Yes 0.70 0.95 0.95 0.85

C Yes No 0.70 0.90 0.70 0.90

D Yes Yes 0.70 0.95 0.95 0.85

TABLE 4. Details of Eight Validation Studies of Size n = 2,000 Explored in Simulation Experiments

Validation Study
������

Scenarios A and C Scenarios B and D

Expected Sensitivity Expected Specificity Expected Sensitivity Expected Specificity

1 0.15 0.70 0.90 0.91 0.87

2 0.25 0.70 0.90 0.89 0.88

3 0.35 0.70 0.90 0.86 0.89

4 0.45 0.70 0.90 0.84 0.90

5 0.55 0.70 0.90 0.81 0.91

6 0.65 0.70 0.90 0.79 0.92

7 0.75 0.70 0.90 0.76 0.93

8 0.85 0.70 0.90 0.74 0.94

http://links.lww.com/EDE/B985
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DISCUSSION
We used data from a cross-sectional study of HIV preva-

lence in East Africa and a series of simulation experiments to 
learn about settings where accounting for covariate-differential 
outcome misclassification is important to estimate prevalence 
accurately. Our examination of assumptions about covariate-
differential misclassification yielded two primary lessons. First, 
the source of validation data used to estimate sensitivity and 
specificity matters. If misclassification varies across levels of 
covariates, and the covariate distribution in the validation sam-
ple differs from the main study, overall estimates of sensitivity 
and specificity from the validation data will not be directly trans-
portable to the main study. In this setting, estimators assum-
ing nondifferential misclassification will yield biased results. 
Second, even when validation data are randomly sampled from 
the main study sample, prevalence estimates transported to an 
external target population may be biased if misclassification dif-
fers across levels of the covariates that differ between the valida-
tion sample and the external target population.

Designing validation studies or finding appropriate 
existing validation data is challenging. Internal validation 
data are rarely available, and external validation data often do 
not include necessary covariate data. Here, we saw that we 

could share validation data across contexts without the need 
for covariate data in the validation sample (1) when sensitivity 
and specificity did not vary across levels of covariates or (2) 
when the distribution of covariates (across which misclassifi-
cation varied) in the validation sample matched the distribu-
tion of those covariates in the target population.

A limitation of the simulations and example presented 
here was that we considered a single covariate Z . When sen-
sitivity and specificity differed by Z  and the distribution of Z  
differed between the validation sample and the target popula-
tion, we saw that we could obtain an estimate with little bias 
by stratifying the validation data by Z , estimating sensitivity 
and specificity separately for each level of Z , and then strati-
fying the main data by Z  before accounting for misclassifica-
tion (estimators µ3 described above). An alternative approach 
would be to reweight the validation sample to have the same 
distribution of Z  as the target population22 and then apply µ 2,  
which uses single estimates of sensitivity and specificity to 
account for misclassification. These two approaches are about 
equally as onerous if Z is a single, discrete covariate. However, 
if Z  were continuous or high dimensional, reweighting the 
validation study may have advantages over the stratifying 
by Z . For example, in the work presented here, we assumed 

FIGURE 2. Bias in estimated prevalence under 4 misclassification scenarios in simulation studies. Bias (lines) and empirical 95% 
confidence intervals (shading) for estimators assuming nondifferential misclassification and misclassification differential by Z in 
scenarios (A–D), summarized over 10,000 simulated cohorts.



access to large validation studies to avoid sparse data after 
stratifying by Z . With small validation studies, stratifying by 
Z  may lead to sparse data in some cells and unstable preva-
lence estimates. Exploration of the finite sample properties of 
the estimators based on validation study size was beyond our 
scope. However, an approach to reweight the validation data 
may have better accuracy in settings with smaller validation 
datasets because stratification by covariates would be unnec-
essary. Similarly, hierarchical approaches, which share some 
information across groups, may offer a  way forward in this 
setting.23

Here, we applied estimators that used sensitivity and 
specificity to account for outcome misclassification. Other 
approaches account for misclassification using the positive 
and negative predictive values. The choice of whether to 
account for misclassification using sensitivity and specificity 
or the predictive values depends in part on the validation data 
or prior knowledge available to parameterize such estima-
tors.24 Examination of when predictive values must be allowed 
to vary across covariates is beyond the scope of this article, 
but we expect considerations to be similar to those examined 
here.

Finally, many approaches to account for misclassifica-
tion, including those presented here, can be parameterized 
using expert knowledge or prior distributions on sensitiv-
ity and specificity in place of validation data.9,25 The results 
presented here apply even if using these external sources of 
knowledge. Such knowledge is necessarily shaped by the con-
text where it is obtained, which implies a specific covariate 
distribution. When parameterizing sensitivity and specificity 
using external knowledge, one must carefully consider the 
transportability of this knowledge between settings.

In conclusion, the source of information about sensitiv-
ity and specificity determines whether these parameters must 
be allowed to vary across covariates when accounting for out-
come misclassification. If one has accurate estimates of sen-
sitivity and specificity in the target population, estimators that 
assume nondifferential outcome misclassification will yield 
estimates of outcome prevalence in the target population with 
little bias. However, if estimates of sensitivity and specificity 
are obtained from a population with a different covariate dis-
tribution from the target population, and sensitivity and speci-
ficity differ by level of that covariate, one must account for this 
differential misclassification to avoid bias.

FIGURE 3. Weighing bias and precision in simulation studies. Root mean squared error for estimators assuming no misclassifica-
tion (naive), nondifferential misclassification, and misclassification differential by Z in two target populations across scenarios 
(A–D), summarized over 10,000 simulated cohorts.
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