45 research outputs found

    Temporal dynamics of musical emotions examined through intersubject synchrony of brain activity

    Get PDF
    To study emotional reactions to music, it is important to consider the temporal dynamics of both affective responses and underlying brain activity. Here, we investigated emotions induced by music using functional magnetic resonance imaging (fMRI) with a data-driven approach based on intersubject correlations (ISC). This method allowed us to identify moments in the music that produced similar brain activity (i.e. synchrony) among listeners under relatively natural listening conditions. Continuous ratings of subjective pleasantness and arousal elicited by the music were also obtained for the music outside of the scanner. Our results reveal synchronous activations in left amygdala, left insula and right caudate nucleus that were associated with higher arousal, whereas positive valence ratings correlated with decreases in amygdala and caudate activity. Additional analyses showed that synchronous amygdala responses were driven by energy-related features in the music such as root mean square and dissonance, while synchrony in insula was additionally sensitive to acoustic event density. Intersubject synchrony also occurred in the left nucleus accumbens, a region critically implicated in reward processing. Our study demonstrates the feasibility and usefulness of an approach based on ISC to explore the temporal dynamics of music perception and emotion in naturalistic condition

    Neural correlates of generation and inhibition of verbal association patterns in mood disorders

    Get PDF
    Objectives: Thought disorders such as rumination or flight of ideas are frequent in patients with mood disorders, and not systematically linked to mood state. These symptoms point to anomalies in cognitive processes mediating the generation and control of thoughts; for example, associative thinking and inhibition. However, their neural substrates are not known. Method: To obtain an ecological measure of neural processes underlying the generation and suppression of spontaneous thoughts, we designed a free word association task during fMRI allowing us to explore verbal associative patterns in patients with mood disorders and matched controls. Participants were presented with emotionally negative, positive or neutral words, and asked to produce two words either related or unrelated to these stimuli. Results: Relative to controls, patients produced a reverse pattern of answer typicality for the related vs unrelated conditions. Controls activated larger semantic and executive control networks, as well as basal ganglia, precuneus and middle frontal gyrus. Unlike controls, patients activated fusiform gyrus, parahippocampal gyrus and medial prefrontal cortex for emotional stimuli. Conclusions: Mood disorder patients are impaired in automated associative processes, but prone to produce more unique/personal associations through activation of memory and self-related area

    Temporal dynamics of musical emotions examined through intersubject synchrony of brain activity.

    Get PDF
    To study emotional reactions to music, it is important to consider the temporal dynamics of both affective responses and underlying brain activity. Here, we investigated emotions induced by music using functional magnetic resonance imaging (fMRI) with a data-driven approach based on intersubject correlations (ISC). This method allowed us to identify moments in the music that produced similar brain activity (i.e. synchrony) among listeners under relatively natural listening conditions. Continuous ratings of subjective pleasantness and arousal elicited by the music were also obtained for the music outside of the scanner. Our results reveal synchronous activations in left amygdala, left insula and right caudate nucleus that were associated with higher arousal, whereas positive valence ratings correlated with decreases in amygdala and caudate activity. Additional analyses showed that synchronous amygdala responses were driven by energy-related features in the music such as root mean square and dissonance, while synchrony in insula was additionally sensitive to acoustic event density. Intersubject synchrony also occurred in the left nucleus accumbens, a region critically implicated in reward processing. Our study demonstrates the feasibility and usefulness of an approach based on ISC to explore the temporal dynamics of music perception and emotion in naturalistic conditions

    Perception et production de tempo (études comportementale et électrophysiologique)

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Yarn unwinding from packages - a discussion on the kinematic and dynamic properties of yarn

    No full text
    Obravnavamo odvijanje preje z navitkov, kar je kljuènega pomena pri številnih tekstilnih procesih. Izpeljemo zelo splošen sistem diferencialnih enačb, ki opisujejo gibanje preje med odvijanjem. Opisan je fizikalni pomen posameznih členov, ki nastopajo v enačbah, s posebnim poudarkom na navideznih silah v vrtečem se koordinatnem sistemu. Prikazemo tudi, kako lahko v kvazistacionarnem približku sistem enačb numerično rešimo in dobimo sliko preje v prostoru med odvijanjem.We discuss yarn unwinding from packages, which is of chief importance in many textile processes. We derive a very general system of differential equations that describe the motion of the yarn during unwinding. We discuss the physicalmeaning of individual terms in the equations with special emphasis on virtuals forces, which appear in rotating coordinate systems. We also show howthe equations can be numerically solved in the quasistationary approximation in order to obtain an image of yarn in space during unwinding

    Inter-individual variability in metacognitive ability for visuomotor performance and underlying brain structures

    No full text
    Metacognition refers to the ability to discriminate between one's own correct and incorrect decisions. The neurobiological underpinnings of metacognition have mainly been studied in perceptual decision-making. Here we investigated whether differences in brain structure predict individual variability in metacognitive sensitivity for visuomotor performance. Participants had to draw straight trajectories toward visual targets, which could unpredictably deviate around detection threshold, report such deviations when detected, and rate their confidence level for such reports. Structural brain MRI analyses revealed that larger gray-matter volume (GMV) in the left middle occipital gyrus, left medial parietal cortex, and right postcentral gyrus predicted higher deviation detection sensitivity. By contrast, larger GMV in the right prefrontal cortex but also right anterior insula and right fusiform gyrus predicted higher metacognitive sensitivity. These results extend past research by linking metacognitive sensitivity for visuomotor behavior to brain areas involved in action agency (insula), executive control (prefrontal cortex) and vision (fusiform)

    Brain substrates for distinct spatial processing components contributing to hemineglect in humans

    No full text
    Several cortical and sub-cortical regions in the right hemisphere, particularly in parietal and frontal lobe, but also in temporal lobe and thalamus, are part of neural networks critically implicated in spatial and attentional functions. Damage to different sites within these networks can cause hemispatial neglect. The aim of this study was to identify the neural substrates of different spatial processing components that are known to contribute to neglect symptoms. First, three different spatial tasks (visual search, bisection, and visual memory) were tested in 27 patients with focal right brain-damage. Voxel-based lesion–symptom mapping was used to determine the relationships between specific sites of damage and severity of deficits in these three spatial tasks. Secondly, fMRI was used in 26 healthy controls who performed the same tasks. In the healthy group, fMRI results showed a differential activation of regions within the parietal and frontal lobes during bisection and visual search, respectively. In the patients, we confirmed a critical role of right lateral parietal cortex in bisection, but lesions in frontal and temporal lobe were more critical for visual search. These data support the existence of distinct components in spatial attentional processes that might be damaged to different degrees in neglect patients.</p

    Neural substrates of cognitive switching and inhibition in a face processing task.

    Full text link
    We frequently need to change our current occupation, an operation requiring additional effortful cognitive demands. Switching from one task to another may involve two distinct processes: inhibition of the previously relevant task-set, and initiation of a new one. Here we tested whether these two processes are underpinned by separate neural substrates, and whether they differ depending on the nature of the task and the emotional content of stimuli. We used functional magnetic resonance imaging in healthy human volunteers who categorize emotional faces according to three different judgment rules (color, gender, or emotional expression). Our paradigm allowed us to separate neural activity associated with inhibition and switching based on the sequence of the tasks required on successive trials. We found that the bilateral medial superior parietal lobule and left intraparietal sulcus showed consistent activation during switching regardless of the task. On the other hand, no common region was activated (or suppressed) as a consequence of inhibition across all tasks. Rather, task-specific effects were observed in brain regions that were more activated when switching to a particular task but less activated after inhibition of the same task. In addition, compared to other conditions, the emotional task elicited a similar switching cost but lower inhibition cost, accompanied by selective decrease in the anterior cingulate cortex when returning to this task shortly after inhibiting it. These results demonstrate that switching relies on domain-general processes mediated by postero-medial parietal areas, engaged across all tasks, but also provide novel evidence that task inhibition produces domain-specific decreases as a function of particular task demands, with only the latter inhibition component being modulated by emotional information
    corecore