203 research outputs found
Recommended from our members
Basal cell carcinoma: Management of advanced or metastatic cancer with checkpoint inhibitors and concurrent paradoxical development of new superficial tumors.
Merkel Cell Carcinoma with a Suppressor of Fused (SUFU) Mutation: Case Report and Potential Therapeutic Implications
The Author(s) 2015. This article is published with open access at Springerlink.com Introduction: Merkel cell carcinoma is a neuroendocrine malignancy. Suppressor of fused (SUFU) is a tumor suppressor oncogene that participates in the Hedgehog (Hh) signaling pathway. The aim of the study wa
Warning signal: Unaware of an in absentia conviction, South African cancer specialist jailed on return to the United Arab Emirates.
In 2002, Dr. Cyril Karabus, a specialist in pediatric cancers and retired head of the Oncology and Hematology Unit of Red Cross Children\u27s Hospital in Capetown, South Africa, spent a brief locum at Sheikh Khalifa Medical City, a hospital in Abu Dhabi in the United Arab Emirates (UAE). He was there for only 5 weeks, during which time he treated a young girl who died of acute myeloblastic leukemia. After Karabus returned home, the girl\u27s father complained to police about his daughter\u27s death, and Karabus was convicted of murder in absentia. Karabus knew nothing of the charges or of the conviction. Widely respected for his expertise and compassion, Karabus had dedicated his life to treating children with malignancies. In South Africa, he was especially well known for his commitment to saving the lives of black children with cancer during the apartheid era.
The karabus affair speaks to larger issues for american academic and medical centers.
Finally, on March 12, 2013, a major American newspaper, The Wall Street Journal, reported on the plight of Dr. Cyril Karabus (1,2). Dr. Karabus is the 78 year old pediatric oncologist from Claremont, Capetown, South Africa who is well known as the retired head of the Oncology and Hematology Unit of the Red Cross Children’s Hospital, University of Cape Town, as well as for his devoted service to poor children in the apartheid era. In 2002, he cared for a three-year old Yemeni girl with acute myelogenous leukemia during a locum tenens in the United Arab Emirates (UAE)
Radiation Therapy Combined With Checkpoint Blockade Immunotherapy for Metastatic Undifferentiated Pleomorphic Sarcoma of the Maxillary Sinus With a Complete Response
Background: Undifferentiated pleomorphic sarcoma (UPS) of the maxillary sinus is an extremely rare malignancy of the head and neck. Surgery is the mainstay of treatment for UPS; however, proximity to vital structures makes it challenging to achieve negative surgical margins. Adjuvant therapy including radiation therapy with or without chemotherapy is generally indicated. Despite advances in multimodality treatment, objective response rates to available therapies and prognosis of metastatic UPS remain dismal. Immunotherapy has become a fourth cornerstone of cancer therapy and checkpoint blockade immunotherapy is a standard of care for recurrent or metastatic cisplatin-refractory head and neck squamous cell carcinoma. Checkpoint blockade immunotherapy is being studied in metastatic sarcoma, including UPS, and while initial results are promising, objective response rates remain below 20%. However, adding radiation therapy to checkpoint blockade immunotherapy has been shown, in both preclinical and retrospective clinical studies, to have combinatorial effects on both local and metastatic disease. Thus, further investigation into the effects of radiation therapy combined with immunotherapy in head and neck sarcomas is warranted.Case Presentation: We present a case of metastatic, chemotherapy-refractory, UPS of the maxillary sinus in a 55-year-old male treated with checkpoint blockade immunotherapy combined with radiation, which resulted in a complete response.Conclusions: This is the first report to our knowledge of metastatic UPS treated with a combination of radiation and dual agent checkpoint blockade immunotherapy. Further investigation is warranted to study the effects of this combination in patients with metastatic UPS that fail to respond to currently available therapies
Phase I Dose Escalation Study of Sodium Stibogluconate (SSG), a Protein Tyrosine Phosphatase Inhibitor, Combined with Interferon Alpha for Patients with Solid Tumors
Purpose: Sodium stibogluconate (SSG), a small molecule inhibitor of protein tyrosine phosphatases, combined with IFN-alpha-2b (IFN-α) inhibited solid tumor cell line growth in vitro. We conducted a phase I clinical trial with SSG plus IFN-α in advanced cancer patients to assess tolerance, maximum tolerated dose (MTD) and immune system effects
Molecular Targeted Therapies of Aggressive Thyroid Cancer
Differentiated thyroid carcinomas (DTCs) that arise from follicular cells account >90% of thyroid cancer (TC) [papillary thyroid cancer (PTC) 90%, follicular thyroid cancer (FTC) 10%], while medullary thyroid cancer (MTC) accounts <5%. Complete total thyroidectomy is the treatment of choice for PTC, FTC, and MTC. Radioiodine is routinely recommended in high-risk patients and considered in intermediate risk DTC patients. DTC cancer cells, during tumor progression, may lose the iodide uptake ability, becoming resistant to radioiodine, with a significant worsening of the prognosis. The lack of specific and effective drugs for aggressive and metastatic DTC and MTC leads to additional efforts toward the development of new drugs. Several genetic alterations in different molecular pathways in TC have been shown in the past few decades, associated with TC development and progression. Rearranged during transfection (RET)/PTC gene rearrangements, RET mutations, BRAF mutations, RAS mutations, and vascular endothelial growth factor receptor 2 angiogenesis pathways are some of the known pathways determinant in the development of TC. Tyrosine kinase inhibitors (TKIs) are small organic compounds inhibiting tyrosine kinases auto-phosphorylation and activation, most of them are multikinase inhibitors. TKIs act on the aforementioned molecular pathways involved in growth, angiogenesis, local, and distant spread of TC. TKIs are emerging as new therapies of aggressive TC, including DTC, MTC, and anaplastic thyroid cancer, being capable of inducing clinical responses and stabilization of disease. Vandetanib and cabozantinib have been approved for the treatment of MTC, while sorafenib and lenvatinib for DTC refractory to radioiodine. These drugs prolong median progression-free survival, but until now no significant increase has been observed on overall survival; side effects are common. New efforts are made to find new more effective and safe compounds and to personalize the therapy in each TC patient
Biology of urothelial tumorigenesis: insights from genetically engineered mice
Urothelium, one of the slowest cycling epithelia in the body, embodies a unique biological context for cellular transformation. Introduction of oncogenes into or removing tumor suppressor genes from the urothelial cells or a combination of both using the transgenic and/or knockout mouse approaches has provided useful insights into the molecular mechanisms of urothelial transformation and tumorigenesis. It is becoming increasingly clear that over-activation of the receptor tyrosine kinase (RTK) pathway, as exemplified by the constitutively activated Ha-ras oncogene, is both necessary and sufficient to initiate the low-grade, non-invasive urothelial carcinomas. Dosage of the mutated Ha-ras, but not concurrent inactivation of pro-senescence molecules p16Ink4a and p19Arf, dictates whether and when the low-grade urothelial carcinomas arise. Inactivation of both p53 and pRb, a prevailing paradigm previously proposed for muscle-invasive urothelial tumorigenesis, is found to be necessary but insufficient to initiate this urothelial carcinoma variant. Instead, downregulation in p53/pRb co-deficient urothelial cells of p107, a pRb family member, is associated with the genesis of the muscle-invasive bladder cancers. p53 deficiency also seems to be capable of cooperating with that of PTEN in eliciting invasive urothelial carcinomas. The genetically engineered mice have improved the molecular definition of the divergent pathways of urothelial tumorigenesis and progression, helped delineate the intricate crosstalk among different genetic alterations within a urothelium-specific context, identified new prognostic markers and novel therapeutic targets potentially applicable for clinical intervention, and provided in vivo platforms for testing preventive strategies of bladder cancer
- …