38 research outputs found

    3. Safety Assessment of SIN LVs Harboring Chromatin Insulators in the Sensitive Cdkn2a-/- In Vivo Genotoxicity Assay Show Enhancer-Blocking Activity of Specific Insulator Sequences

    Get PDF
    Chromatin insulators (CI) have been proposed as safety features to increase the safety of self-inactivating (SIN) lentiviral vectors (LV) for gene therapy applications.By taking advantage of an in vivo genotoxicity assay based on the systemic injection of LVs in newborn tumor-prone Cdkn2a-/- mice we were able to measure vector-induced genotoxicity as an accelerated tumor onset that was proportional to the genotoxic potential of the tested LV. Importantly, we took advantage of integration sites (IS) analysis to qualitatively characterize CI that were shown by other in vitro and ex vivo studies to function as insulators. Recently we showed for the first time that a CAAT-box binding Nuclear factor 1 (CTF/NF1)-based CI, when cloned in the LTRs of a SIN.LV with a strong SFFV enhancer-promoter in internal position, significantly reduced the frequency of tumors harboring integrations activating Map3k8 oncogene accompanied by a marked skewing towards tumors harboring inactivating insertions targeting Pten.Here by using this stringent in vivo genotoxicity assay and IS analysis in tumors we expanded our studies towards other CI sequences whose function is regulated by the binding of the CCCTC-binding factor (CTCF), the best characterized insulator protein in vertebrates.Each CTCF-based insulating cassette was cloned in the LTRs of a LV construct containing the SFFV promoter in internal position (CTCF.SIN.LVs) and injected in Cdkn2a-/- mice. Interestingly, mice treated with some of the CTCF.SIN.LVs tested displayed an increased median survival time (ranging from 193.5 to 214 days) compared to mice treated with the uninsulated parental SIN.LV (186 days). Importantly, our preliminary IS analysis in tumors (881 IS) showed that two CTCF.SIN.LVs did not target Map3k8 oncogene while Pten was often disrupted by exonic insertions, an escape genotoxicity mechanism on which CI cannot act.These data confirm that the inclusion of two novel CTCF-based CIs of human origin completely abrogated the formation of tumors caused by enhancer-mediated activation of an oncogene in vivo.The ability of these two new insulator elements to block the crosstalk between powerful vector enhancers and cellular regulatory elements increase the safety of SIN LVs and justify their prompt adoption in future gene therapy applications

    The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations

    Get PDF
    International audienceBACKGROUND:Full-term pregnancy (FTP) is associated with a reduced breast cancer (BC) risk over time, but women are at increased BC risk in the immediate years following an FTP. No large prospective studies, however, have examined whether the number and timing of pregnancies are associated with BC risk for BRCA1 and BRCA2 mutation carriers.METHODS:Using weighted and time-varying Cox proportional hazards models, we investigated whether reproductive events are associated with BC risk for mutation carriers using a retrospective cohort (5707 BRCA1 and 3525 BRCA2 mutation carriers) and a prospective cohort (2276 BRCA1 and 1610 BRCA2 mutation carriers), separately for each cohort and the combined prospective and retrospective cohort.RESULTS:For BRCA1 mutation carriers, there was no overall association with parity compared with nulliparity (combined hazard ratio [HRc] = 0.99, 95% confidence interval [CI] = 0.83 to 1.18). Relative to being uniparous, an increased number of FTPs was associated with decreased BC risk (HRc = 0.79, 95% CI = 0.69 to 0.91; HRc = 0.70, 95% CI = 0.59 to 0.82; HRc = 0.50, 95% CI = 0.40 to 0.63, for 2, 3, and ≥4 FTPs, respectively, P trend < .0001) and increasing duration of breastfeeding was associated with decreased BC risk (combined cohort P trend = .0003). Relative to being nulliparous, uniparous BRCA1 mutation carriers were at increased BC risk in the prospective analysis (prospective hazard ration [HRp] = 1.69, 95% CI = 1.09 to 2.62). For BRCA2 mutation carriers, being parous was associated with a 30% increase in BC risk (HRc = 1.33, 95% CI = 1.05 to 1.69), and there was no apparent decrease in risk associated with multiparity except for having at least 4 FTPs vs. 1 FTP (HRc = 0.72, 95% CI = 0.54 to 0.98).CONCLUSIONS:These findings suggest differential associations with parity between BRCA1 and BRCA2 mutation carriers with higher risk for uniparous BRCA1 carriers and parous BRCA2 carriers

    Correction to: Risk-reducing salpingo-oophorectomy, natural menopause, and breast cancer risk: an international prospective cohort of BRCA1 and BRCA2 mutation carriers.

    Get PDF
    After publication of the original article [1], we were notified that columns in Table 2 were erroneously displayed

    The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations

    Get PDF
    Background: Full-term pregnancy (FTP) is associated with a reduced breast cancer (BC) risk over time, but women are at increased BC risk in the immediate years following an FTP. No large prospective studies, however, have examined whether the number and timing of pregnancies are associated with BC risk for BRCA1 and BRCA2 mutation carriers. Methods: Using weighted and time-varying Cox proportional hazards models, we investigated whether reproductive events are associated with BC risk for mutation carriers using a retrospective cohort (5707 BRCA1 and 3525 BRCA2 mutation carriers) and a prospective cohort (2276 BRCA1 and 1610 BRCA2 mutation carriers), separately for each cohort and the combined prospective and retrospective cohort. Results: For BRCA1 mutation carriers, there was no overall association with parity compared with nulliparity (combined hazard ratio [HRc] ÂĽ 0.99, 95% confidence interval [CI] ÂĽ 0.83 to 1.18). Relative to being uniparous, an increased number of FTPs was associated with decreased BC risk (HRcÂĽ 0.79, 95% CI ÂĽ 0.69 to 0.91; HRcÂĽ 0.70, 95% CI ÂĽ 0.59 to 0.82; HRcÂĽ 0.50, 95% CI ÂĽ 0.40 to 0.63, for 2, 3, and 4 FTPs, respectively, Ptrend < .0001) and increasing duration of breastfeeding was associated with decreased BC risk (combined cohort Ptrend ÂĽ .0003). Relative to being nulliparous, uniparous BRCA1 mutation carriers were at increased BC risk in the prospective analysis (prospective hazard ration [HRp] ÂĽ 1.69, 95% CI ÂĽ 1.09 to 2.62). For BRCA2 mutation carriers, being parous was associated with a 30% increase in BC risk (HRc ÂĽ 1.33, 95% CI ÂĽ 1.05 to 1.69), and there was no apparent decrease in risk associated with multiparity except for having at least 4 FTPs vs. 1 FTP (HRcÂĽ 0.72, 95% CI ÂĽ 0.54 to 0.98). Conclusions: These findings suggest differential associations with parity between BRCA1 and BRCA2 mutation carriers with higher risk for uniparous BRCA1 carriers and parous BRCA2 carriers

    Contribution a l'etablissement d'une carte genetique humaine: localisation physique de sondes anonymes polymorphes et de sequences specifiques clonees

    No full text
    Available from INIST (FR), Document Supply Service, under shelf-number : TD 20524 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEFRFranc

    Prédisposition héréditaire au cancer du sein (1)

    No full text
    L’oncogénétique a pour objectif principal de caractériser une sous-population à haut risque de développement de cancers à un âge précoce afin de préconiser les recommandations pour un parcours optimisé de suivi et de soins. La consultation d’oncogénétique contribue à évaluer un risque individuel à partir d’une histoire familiale. Par une approche familiale de génétique formelle, il s’agit de repérer les familles avec une forte agrégation de cancers, éventuellement évocatrice d’un syndrome de prédisposition héréditaire. Cette démarche peut conduire à la proposition d’un test génétique constitutionnel à la recherche de mutations causales. Jusqu’à une période récente, la recherche de mutation constitutionnelle sur les gènes BRCA a abouti à l’identification d’une mutation délétère chez moins de 10 % des cas-index analysés. Il est donc important d’évaluer l’impact de nouveaux gènes dans le panorama actuel de la prédisposition héréditaire au cancer du sein et de l’ovaire

    Prédisposition héréditaire au cancer du sein (2)

    No full text
    Les progrès du séquençage à haut débit permettent de rechercher simultanément des mutations sur plusieurs gènes pour explorer la prédisposition héréditaire au cancer du sein. Selon le gène, le niveau de risque et le spectre des cancers peuvent varier. Les dispositions spécifiques de prise en charge préconisées sont modulées en fonction des gènes, classés en : (1) très haut risque, tels les gènes BRCA1/2 suivant les recommandations de l’INCa 2017 ; (2) risque élevé ; (3) augmentation modérée : dans ce dernier cas, les mesures de surveillance sont similaires à la population générale. En l’absence de mutation, d’autres facteurs de risque peuvent intervenir et des scores professionnels être calculés. Cependant, selon les recommandations de la HAS 2014, l’histoire familiale prévaut : sur cette base, le dispositif national d’oncogénétique de l’INCa a mis en place un maillage national de réseaux de suivi des personnes à haut risque, présentant ou non des mutations. Enfin, de nouvelles voies thérapeutiques spécifiques s’ouvrent pour les personnes porteuses de mutations

    Technological overview of iPS induction from human adult somatic cells.

    No full text
    International audienceThe unlimited proliferation capacity of embryonic stem cells (ESCs) combined with their pluripotent differentiation potential in various lineages raised great interest in both the scientific community and the public at large with hope for future prospects of regenerative medicine. However, since ESCs are derived from human embryos, their use is associated with significant ethical issues preventing broad studies and therapeutic applications. To get around this bottleneck, Takahashi and Yamanaka have recently achieved the conversion of adult somatic cells into ES-like cells via the forced expression of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. This first demonstration attracted public attention and opened a new field of stem cells research with both cognitive - such as disease modeling - and therapeutic prospects. This pioneer work just received the 2012 Nobel Prize in Physiology or Medicine. Many methods have been reported since 2006, for the generation of induced pluripotent stem (iPS) cells. Most strategies currently under use are based on gene delivery via gamma-retroviral or lentiviral vectors; some experiments have also been successful using plasmids or transposons- based systems and few with adenovirus. However, most experiments involve integration in the host cell genome with an identified risk for insertional mutagenesis and oncogenic transformation. To circumvent such risks which are deemed incompatible with therapeutic prospects, significant progress has been made with transgene-free reprogramming methods based on e.g.: sendai virus or direct mRNA or protein delivery to achieve conversion of adult cells into iPS. In this review we aim to cover current knowledge relating to both delivery systems and combinations of inducing factors including chemicals which are used to generate human iPS cells. Finally, genetic instability resulting from the reprogramming process is also being considered as a safety bottleneck for future clinical translation and stem cell-therapy prospects based on iPS

    Technological Overview of iPS Induction from Human Adult Somatic Cells

    No full text
    corecore