29 research outputs found

    Nonalcoholic steatohepatitis and hepatocellular carcinoma: Brazilian survey

    Get PDF
    OBJECTIVE: The majority of cases of hepatocellular carcinoma have been reported in individuals with cirrhosis due to chronic viral hepatitis and alcoholism, but recently, the prevalence has become increasingly related to nonalcoholic steatohepatitis around the world. The study aimed to evaluate the clinical and histophatological characteristics of hepatocellular carcinoma in Brazilians' patients with nonalcoholic steatohepatitis at the present time. METHODS: Members of the Brazilian Society of Hepatology were invited to complete a survey regarding patients with hepatocellular carcinoma related to nonalcoholic steatohepatitis. Patients with a history of alcohol intake (>;20 g/day) and other liver diseases were excluded. Hepatocellular carcinoma diagnosis was performed by liver biopsy or imaging methods according to the American Association for the Study of Liver Diseases’ 2011 guidelines. RESULTS: The survey included 110 patients with a diagnosis of hepatocellular carcinoma and nonalcoholic fatty liver disease from nine hepatology units in six Brazilian states (Bahia, Minas Gerais, Rio de Janeiro, São Paulo, Paraná and Rio Grande do Sul). The mean age was 67±11 years old, and 65.5% were male. Obesity was observed in 52.7% of the cases; diabetes, in 73.6%; dyslipidemia, in 41.0%; arterial hypertension, in 60%; and metabolic syndrome, in 57.2%. Steatohepatitis without fibrosis was observed in 3.8% of cases; steatohepatitis with fibrosis (grades 1-3), in 27%; and cirrhosis, in 61.5%. Histological diagnosis of hepatocellular carcinoma was performed in 47.2% of the patients, with hepatocellular carcinoma without cirrhosis accounting for 7.7%. In total, 58 patients with cirrhosis had their diagnosis by ultrasound confirmed by computed tomography or magnetic resonance imaging. Of these, 55% had 1 nodule; 17%, 2 nodules; and 28%, ≥3 nodules. CONCLUSIONS: Nonalcoholic steatohepatitis is a relevant risk factor associated with hepatocellular carcinoma in patients with and without cirrhosis in Brazil. In this survey, hepatocellular carcinoma was observed in elevated numbers of patients with steatohepatitis without cirrhosis

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    ATLANTIC EPIPHYTES: a data set of vascular and non-vascular epiphyte plants and lichens from the Atlantic Forest

    Get PDF
    Epiphytes are hyper-diverse and one of the frequently undervalued life forms in plant surveys and biodiversity inventories. Epiphytes of the Atlantic Forest, one of the most endangered ecosystems in the world, have high endemism and radiated recently in the Pliocene. We aimed to (1) compile an extensive Atlantic Forest data set on vascular, non-vascular plants (including hemiepiphytes), and lichen epiphyte species occurrence and abundance; (2) describe the epiphyte distribution in the Atlantic Forest, in order to indicate future sampling efforts. Our work presents the first epiphyte data set with information on abundance and occurrence of epiphyte phorophyte species. All data compiled here come from three main sources provided by the authors: published sources (comprising peer-reviewed articles, books, and theses), unpublished data, and herbarium data. We compiled a data set composed of 2,095 species, from 89,270 holo/hemiepiphyte records, in the Atlantic Forest of Brazil, Argentina, Paraguay, and Uruguay, recorded from 1824 to early 2018. Most of the records were from qualitative data (occurrence only, 88%), well distributed throughout the Atlantic Forest. For quantitative records, the most common sampling method was individual trees (71%), followed by plot sampling (19%), and transect sampling (10%). Angiosperms (81%) were the most frequently registered group, and Bromeliaceae and Orchidaceae were the families with the greatest number of records (27,272 and 21,945, respectively). Ferns and Lycophytes presented fewer records than Angiosperms, and Polypodiaceae were the most recorded family, and more concentrated in the Southern and Southeastern regions. Data on non-vascular plants and lichens were scarce, with a few disjunct records concentrated in the Northeastern region of the Atlantic Forest. For all non-vascular plant records, Lejeuneaceae, a family of liverworts, was the most recorded family. We hope that our effort to organize scattered epiphyte data help advance the knowledge of epiphyte ecology, as well as our understanding of macroecological and biogeographical patterns in the Atlantic Forest. No copyright restrictions are associated with the data set. Please cite this Ecology Data Paper if the data are used in publication and teaching events. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore