449 research outputs found

    Strain analysis of multiferroic BiFeO3-CoFe2O4 nanostructures by Raman scattering

    Full text link
    We report a Raman scattering investigation of columnar BiFeO3-CoFe2O4 (BFO-CFO) epitaxial thin film nanostructures, where BFO pillars are embedded in a CFO matrix. The feasibility of a strain analysis is illustrated through an investigation of two nanostructures with different BFO-CFO ratios. We show that the CFO matrix presents the same strain state in both nanostructures, while the strain state of the BFO pillars depends on the BFO/CFO ratio with an increasing tensile strain along the out-of-plane direction with decreasing BFO content. Our results demonstrate that Raman scattering allows monitoring strain states in complex 3D multiferroic pillar/matrix composites.Comment: revised version submitted to Appl. Phys. Let

    Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas)

    Get PDF
    The impact of water deficit on stomatal conductance (gs), petiole hydraulic conductance (Kpetiole), and vulnerability to cavitation (PLC, percentage loss of hydraulic conductivity) in leaf petioles has been observed on field-grown vines (Vitis vinifera L. cv. Chasselas). Petioles were highly vulnerable to cavitation, with a 50% loss of hydraulic conductivity at a stem xylem water potential (Ψx) of –0.95 MPa, and up to 90% loss of conductivity at a Ψx of –1.5 MPa. Kpetiole described a daily cycle, decreasing during the day as water stress and evapotranspiration increased, then rising again in the early evening up to the previous morning's Kpetiole levels. In water-stressed vines, PLC increased sharply during the daytime and reached maximum values (70–90%) in the middle of the afternoon. Embolism repair occurred in petioles from the end of the day through the night. Indeed, PLC decreased in darkness in water-stressed vines. PLC variation in irrigated plants showed the same tendency, but with a smaller amplitude. The Chasselas cultivar appears to develop hydraulic segmentation, in which petiole cavitation plays an important role as a ‘hydraulic fuse’, thereby limiting leaf transpiration and the propagation of embolism and preserving the integrity of other organs (shoots and roots) during water stress. In the present study, progressive stomatal closure responded to a decrease in Kpetiole and an increase in cavitation events. Almost total closure of stomata (90%) was measured when PLC in petioles reached >90%

    Plant/Leaf traits and adaptive strategies of Cistus species to Mediterranean drought and insolation in southern Portugal

    Get PDF
    The effects of climate change can result in dramatic consequences in specific ecosystems such as montados that are seriously threatened by the absence of cork and holm oak (Quercus suber and Q. rotundifolia) natural regeneration. Shrubs of the genus Cistus, which are among the most important elements of encroached montados, seem to promote soil rehabilitation and enhance oak regeneration (Simões et al. 2009). In this context, we compared the life strategies and evaluated the potential ability of Cistus species to adapt to the increasing drought expected for the Mediterranean region, and thus their role on the sustainability of cork oak montados

    Simultaneous Determination of Human Plasma Levels of Citalopram, Paroxetine, Sertraline, and Their Metabolites by Gas Chromatography—Mass Spectrometry

    Get PDF
    A gas chromatography—mass spectrometry method is presented which allows the simultaneous determination of the plasma concentrations of the selective serotonin reuptake inhibitors citalopram, paroxetine, sertraline, and their pharmacologically active N-demethylated metabolites (desmethylcitalopram, didesmethylcitalopram, and desmethylsertraline) after derivatization with the reagent N-methyl-bis(trifluoroacetamide). No interferences from endogenous compounds are observed following the extraction of plasma samples from six different human subjects. The standard curves are linear over a working range of 10-500 ng/mL for citalopram, 10-300 ng/mL for desmethylcitalopram, 5-60 ng/mL for didesmethylcitalopram, 20-400 ng/mL for sertraline and desmethylsertraline, and 10-200 ng/mL for paroxetine. Recoveries measured at three concentrations range from 81 to 118% for the tertiary amines (citalopram and the internal standard methylmaprotiline), 73 to 95% for the secondary amines (desmethylcitalopram, paroxetine and sertraline), and 39 to 66% for the primary amines (didesmethylcitalopram and desmethylsertraline). Intra- and interday coefficients of variation determined at three concentrations range from 3 to 11 % for citalopram and its metabolites, 4 to 15% for paroxetine, and 5 to 13% for sertraline and desmethylsertraline. The limits of quantitation of the method are 2 ng/mL for citalopram and paroxetine, 1 ng/mL for sertraline, and 0.5 ng/mL for desmethylcitalopram, didesmethylcitalopram, and desmethylsertraline. No interferences are noted from 20 other psychotropic drugs. This sensitive and specific method can be used for single-dose pharmacokinetics. It is also useful for therapeutic drug monitoring of these three drugs and could possibly be adapted for the quantitation of the two other selective serotonin reuptake inhibitors on the market, namely fluoxetine and fluvoxamin

    Cork oak (Quercus suber L.) seedlings acclimate to elevated

    Get PDF
    Leaf gas-exchange, leaf and shoot anatomy, wood density and hydraulic conductivity were investigated in seedlings of Quercus suber L. grown for 15 months either at elevated (700 lmol mol-1) or normal (350 lmol mol-1) ambient atmospheric CO2 concentrations. Plants were grown in greenhouses in a controlled environment: relative humidity 50% (±5), temperature similar to external temperature and natural light conditions. Plants were supplied with nutrients and two water regimes (WW, well watered; WS, water stress). After 6 months exposure to CO2 enrichment an increase in photosynthetic rate, a decrease in stomatal conductance and a decrease in carbon isotope discrimination (D13C) were observed, along with enhanced growth and an increase in the number of branches and branch diameter. Over the same period, the shoot weight ratio increased, the root weight ratio decreased and the leaf weight ratio was unaffected. The specific leaf area increased due to an increase in total leaf thickness, mainly due to the palisade parenchyma and starch. However, after 9 and 15 months of elevated CO2 exposure, the above-mentioned physiological and morphological parameters appeared to be unaffected. Elevated CO2 did not promote changes in vessel lumen diameter, vessel frequency or wood density in stems grown in greenhouse conditions. As a consequence, xylem hydraulic efficiency remained unchanged. Likewise, xylem vulnerability to embolism was not modified by elevated CO2. In summary, elevated CO2 had no positive effect on the ecophysiological parameters or growth of water stressed plants

    Herbaceous angiosperms are not more vulnerable to drought-induced embolism than angiosperm trees

    Get PDF
    The water transport pipeline in herbs is assumed to be more vulnerable to drought than in trees due to the formation of frequent embolisms (gas bubbles), which could be removed by the occurrence of root pressure, especially in grasses. Here, we studied hydraulic failure in herbaceous angiosperms by measuring the pressure inducing 50% loss of hydraulic conductance (P50) in stems of 26 species, mainly European grasses (Poaceae). Our measurements show a large range in P50 from 20.5 to 27.5 MPa, which overlaps with 94% of the woody angiosperm species in a worldwide, published data set and which strongly correlates with an aridity index. Moreover, the P50 values obtained were substantially more negative than the midday water potentials for five grass species monitored throughout the entire growing season, suggesting that embolism formation and repair are not routine and mainly occur under water deficits. These results show that both herbs and trees share the ability to withstand very negative water potentials without considerable embolism formation in their xylem conduits during drought stress. In addition, structure-function trade-offs in grass stems reveal that more resistant species are more lignified, which was confirmed for herbaceous and closely related woody species of the daisy group (Asteraceae). Our findings could imply that herbs with more lignified stems will become more abundant in future grasslands under more frequent and severe droughts, potentially resulting in lower forage digestibility.

    The magnetic field of the B3V star 16 Pegasi

    Full text link
    The Slowly Pulsating B3V star 16 Pegasi was discovered by Hubrig (2006) to be magnetic, based on low-resolution spectropolarimetric observations with FORS1 at the VLT. We have confirmed the presence of a magnetic field with new measurements with the spectropolarimeters Narval at TBL, France and Espadons at CFHT, Hawaii during 2007. The most likely period is about 1.44 d for the modulation of the field, but this could not be firmly established with the available data set. No variability has been found in the UV stellar wind lines. Although the star was reported once to show H alpha in emission, there exists at present no confirmation that the star is a Be star.Comment: 2 pages, 4 figures, contrubuted poster at IAU Symposium 259 "Cosmic Magnetic Fields: from Planets, to Stars and Galaxies", Tenerife, Spain, November 3-7, 200
    corecore