644 research outputs found
On the stability of the primordial closed string gas
We recast the study of a closed string gas in a toroidal container in the
physical situation in which the single string density of states is independent
of the volume because energy density is very high. This includes the gas for
the well known Brandenberger-Vafa cosmological scenario. We describe the gas in
the grandcanonical and microcanonical ensembles. In the microcanonical
description, we find a result that clearly confronts the Brandenberger-Vafa
calculation to get the specific heat of the system. The important point is that
we use the same approach to the problem but a different regularization. By the
way, we show that, in the complex temperature formalism, at the Hagedorn
singularity, the analytic structure obtained from the so-called
F-representation of the free energy coincides with the one computed using the
S-representation.Comment: 20 pages and 1 figure. The final version that appeared in JHE
Thermodynamic nonextensivity in a closed string gas
Well known results in string thermodynamics show that there is always a
negative specific heat phase in the microcanonical description of a gas of
closed free strings whenever there are no winding modes present. We will
carefully compute the number of strings in the gas to show how this negative
specific heat is related to the fact that the system does not have
thermodynamic extensivity. We will also discuss the consequences for a system
of having a microcanonical negative specific heat versus the exact result that
such a thing cannot happen in any canonical (fixed temperature) description.Comment: Title + 13 pages, more typos correcte
Removal of Di-(2-ethylhexyl)phthalate (DEHP) from water using a LECA-Pseudomonas putida Biobarrier
The removal and biodegradation of an organic toxic pollutant, di-(2-ethylhexyl) phthalate (DEHP), has been investigated. Initially, a screening of different degrading bacteria has been developed and Pseudomonas putida showed the highest degradation ability. This bacterium was immobilised in an inert support, light expanded clay aggregate (LECA). After the biofilm formation on the LECA, the degradation of DEHP was evaluated operating in a fixed bed reactor. In addition, several studies of DEHP adsorption on LECA were carried out in order to determine the mechanism of the degradation process that takes place. The degradation studies demonstrated that the developed system can be applied to DEHP removal and the degradation is due to adsorption process and the activity of P. putida
Synthesis of Oligosaccharides Derived from Lactulose (OsLu) Using Soluble and Immobilized Aspergillus oryzae β-Galactosidase
β-Galactosidase from Aspergillus oryzae offers a high yield for the synthesis of oligosaccharides derived from lactulose (OsLu) by transgalactosylation. Oligosaccharides with degree of polymerization (DP) ≥ 3 have shown to possess higher in vitro bifidogenic effect than di- and tetrasaccharides. Thus, in this work, an optimization of reaction conditions affecting the specific selectivity of A. oryzae β-galactosidase for synthesis of OsLu has been carried out to enhance OsLu with DP ≥ 3 production. Assays with β-galactosidase immobilized onto a glutaraldehyde–agarose support were also carried out with the aim of making the process cost-effective and industrially viable. Optimal conditions with both soluble and immobilized enzyme for the synthesis of OsLu with DP ≥ 3 were 50 °C, pH 6.5, 450 g/L of lactulose, and 8 U/mL of enzyme, reaching yields of ca. 50% (w/v) of total OsLu and ca. 20% (w/v) of OsLu with DP 3, being 6′-galactosyl-lactulose the major one, after a short reaction time. Selective formation of disaccharides, however, was favored at 60 °C, pH 4.5, 450 g/L of lactulose and 8 U/mL of enzyme. Immobilization increased the enzymatic stability to temperature changes and allowed to reuse the enzyme. We can conclude that the use, under determined optimal conditions, of the A. oryzae β-galactosidase immobilized on a support of glutaraldehyde–agarose constitutes an efficient and cost-effective alternative to the use of soluble β-galactosidases for the synthesis of prebiotic OsLu mixturesThis work has been supported by projects AGL2014-53445-R from Ministerio de Economía y Competitividad; ALIBIRD-CM S-2013/ABI-2728 from Comunidad Autónoma de Madrid and COOPB20099 from CSI
Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum
In this work, the formation of permeable reactive biobarriers (PRBBs) using Trichoderma longibrachiatum over nylon sponge as bioreactive medium for removal of polycyclic aromatic hydrocarbons (PAHs) was studied. Colony formation was pretested without PAH presence by inoculation of fungus into nylon sponge. The fungus formed a large quantity of strongly adhesive biofilm among nylon sponge. Afterwards, the ability of the developed bioreactive medium was tested to remediate phenanthrene in aqueous medium and in soil. In aqueous medium, a 90% of phenanthrene concentration reduction was observed after 14 d. However, the pollutant removal in soil requires previous fungus colonization and the attained level was around 70% after 28 d. Subsequently, the formed bioreactive material was used in a glass column reactor to evaluate its application as PRBBs. Mixtures of phenanthrene, benzo[a]anthracene and pyrene at several concentrations, from 100 to 400 μM, were treated. In all cases, the performance of the PRBB was satisfactory and total PAH removals were achieved. These results suggest that PRBBs of T. longibrachiatum supported on nylon sponge can be an effective method for the treatment of PAHs.This research was funded by Spanish Ministry of Science and Innovation and FEDER Funds (Project CTM 2011-25389) and for financial support of Marta Pazos under the Ramon y Cajal programme and Marta Cobas under the final project master grant "Campus do Mar Knowledge in depth"
Theoretical and Experimental Studies of Schottky Diodes That Use Aligned Arrays of Single Walled Carbon Nanotubes
We present theoretical and experimental studies of Schottky diodes that use
aligned arrays of single walled carbon nanotubes. A simple physical model,
taking into account the basic physics of current rectification, can adequately
describe the single-tube and array devices. We show that for as grown array
diodes, the rectification ratio, defined by the
maximum-to-minimum-current-ratio, is low due to the presence of m-SWNT shunts.
These tubes can be eliminated in a single voltage sweep resulting in a high
rectification array device. Further analysis also shows that the channel
resistance, and not the intrinsic nanotube diode properties, limits the
rectification in devices with channel length up to ten micrometer.Comment: Nano Research, 2010, accepte
Retrocaval ureter with ureterohydronephrosis
Retrocaval ureter is one of the rarest congenital anomaly. We report a case of retrocaval ureter who presented to us with right lumbar pain, with ureterohydronephrosis. The intravenous urography showed dilated proximal ureteric segment with moderate hydronephrosis. The patient was operated, findings were Retrocaval ureter and a ureteroureterostomy with anteriorisation of ureter was performe
- …
