64 research outputs found

    Recent developments in genetics and medically assisted reproduction : from research to clinical applications

    Get PDF
    Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved.Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    E Pluribus Unum? Varieties and Commonalities of Capitalism

    Full text link

    Scenario archetypes:converging rather than diverging themes

    Get PDF
    Future scenarios provide challenging, plausible and relevant stories about how the future could unfold. Urban Futures (UF) research has identified a substantial set (>450) of seemingly disparate scenarios published over the period 1997–2011 and within this research, a sub-set of >160 scenarios has been identified (and categorized) based on their narratives according to the structure first proposed by the Global Scenario Group (GSG) in 1997; three world types (Business as Usual, Barbarization, and Great Transitions) and six scenarios, two for each world type (Policy Reform—PR, Market Forces—MF, Breakdown—B, Fortress World—FW, Eco-Communalism—EC and New Sustainability Paradigm—NSP). It is suggested that four of these scenario archetypes (MF, PR, NSP and FW) are sufficiently distinct to facilitate active stakeholder engagement in futures thinking. Moreover they are accompanied by a well-established, internally consistent set of narratives that provide a deeper understanding of the key fundamental drivers (e.g., STEEP—Social, Technological, Economic, Environmental and Political) that could bring about realistic world changes through a push or a pull effect. This is testament to the original concept of the GSG scenarios and their development and refinement over a 16 year period

    Implications of NiMH Hysteresis on HEV Battery Testing and Performance 19 th International Electric Vehicle Symposium Implications of NiMH Hysteresis on HEV Battery Testing and Performance

    No full text
    Abstract Nickel Metal-Hydride (NiMH) is an advanced high-power battery technology that is presently employed in Hybrid Electric Vehicles (HEVs) and is one of several technologies undergoing continuing research and development by FreedomCAR. Unlike some other HEV battery technologies, NiMH exhibits a strong hysteresis effect upon charge and discharge. This hysteresis has a profound impact on the ability to monitor state-of-charge and battery performance. Researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) have been investigating the implications of NiMH hysteresis on HEV battery testing and performance. Experimental results, insights, and recommendations are presented
    corecore