7 research outputs found

    Parallel Processing of Appetitive Short- and Long-Term Memories In Drosophila

    Get PDF
    SummaryIt is broadly accepted that long-term memory (LTM) is formed sequentially after learning and short-term memory (STM) formation, but the nature of the relationship between early and late memory traces remains heavily debated [1–5]. To shed light on this issue, we used an olfactory appetitive conditioning in Drosophila, wherein starved flies learned to associate an odor with the presence of sugar [6]. We took advantage of the fact that both STM and LTM are generated after a unique conditioning cycle [7, 8] to demonstrate that appetitive LTM is able to form independently of STM. More specifically, we show that (1) STM retrieval involves output from γ neurons of the mushroom body (MB), i.e., the olfactory memory center [9, 10], whereas LTM retrieval involves output from αβ MB neurons; (2) STM information is not transferred from γ neurons to αβ neurons for LTM formation; and (3) the adenylyl cyclase RUT, which is thought to operate as a coincidence detector between the olfactory stimulus and the sugar stimulus [11–14], is required independently in γ neurons to form appetitive STM and in αβ neurons to form LTM. Taken together, these results demonstrate that appetitive short- and long-term memories are formed and processed in parallel

    Widespread brain distribution of the Drosophila metabotropic glutamate receptor.

    No full text
    Glutamate is the predominant excitatory neurotransmitter in the vertebrate brain, whereas acetylcholine has been considered to play the same role in insects. Recent studies have, however, questioned the latter view by showing a rather general distribution of glutamate transporters. Here, we describe the expression pattern of the receptor DmGlu-A (DmGluRA), the unique homolog of vertebrate metabotropic glutamate receptors. Metabotropic glutamate receptors play important roles in the regulation of glutamatergic neurotransmission. Using a specific antibody, we report DmGluRA expression in most neuropile areas in both larvae and adults, but not in the lobes of the mushroom bodies. These observations suggest a key role for glutamate in the insect brain

    Down-regulation of the transcription factor ZAC1 upon pre- and postconditioning protects against I/R injury in the mouse myocardium

    No full text
    International audienceAIMS: Myocardial infarction leads to heart failure and death. Ischaemic preconditioning (PreC) and postconditioning (PostC) reduce infarct size in animal models and human. Zac1 was identified as the only gene related to apoptosis and jointly down-regulated upon PreC and PostC. The aim of our study was to investigate the role of Zac1 down-regulation during ischaemia-reperfusion (I/R) in vivo.METHODS AND RESULTS: C57BL/6 mice were submitted to myocardial I/R injury, PreC, or PostC protocols. QPCR and immunochemistry showed that Zac1 expression was down-regulated both at the transcriptional and the protein levels upon PreC and PostC. Zac1(-/-) Knockout mice (n = 7) developed smaller infarcts (54%) than Zac1(+/+) littermates (n = 8) and decreased apoptosis (61.7%) in the ischaemic part of the left ventricle during I/R (Zac1(-/-), n = 6 vs. Zac1(+/+), n = 7; P = 0.0012). Mutants showed under control conditions a decrease of 53.9% in mRNA of Daxx, a pro-apoptotic protein playing a key role in I/R injuries (4.81 ± 0.77, n = 4 Zac1(-/-) mice vs. 10.44 ± 3.5, n = 7 Zac1(+/+) mice; P = 0.0121).CONCLUSION: Our study shows for the first time that Zac1 is down-regulated both at the transcriptional and protein levels upon PreC and PostC in wild-type mice. Moreover, inactivation of Zac1 in vivo is associated with a decreased amount of Daxx transcripts and, upon I/R injury, decreased infarct size and apoptosis. Altogether, our results show that Zac1 down-regulation plays a key role during cardioprotection against I/R injury and support the concept that cardioprotection regulates a network of interacting pro-apoptotic genes including Zac1 and Daxx
    corecore