230 research outputs found

    Epitaxial growth of an antireflective, conductive, graded index ITO nanowire layer

    Get PDF
    Nanoporous and nanostructured films, assemblies and arrangements are important from an applied point of view in microelectronics, photonics and optical materials. The ability to minimize reflection, control light output and use contrast and variation of the refractive index to modify photonic characteristics can provide routes to enhanced photonic crystal devices, omnidirectional reflectors, antireflection coatings and broadband absorbing materials. This work shows how multiscale branching of defect-free ITO NWs grown as a layer with a graded refractive index improves antireflection properties and shifts the transparency window into the near-infrared (NIR). The measurements confirm the structural quality and growth mechanism of the NW layer without any heterogeneous seeding for NW growth. Optical reflectance measurements confirm broadband antireflection (reflection <5%) between 1.3 and 1.6 μm which is tunable with the NW density. The work also outlines how the suppression of the Burstein-Moss shifts using refractive index variation allows transparency in a conductive NW layer into NIR range

    Broadband Dynamic Polarization Conversion in Optomechanical Metasurfaces

    Get PDF
    Artificial photonic materials, nanofabricated through wavelength-scale engineering, have shown astounding and promising results in harnessing, tuning, and shaping photonic beams. Metamaterials have proven to be often outperforming the natural materials they take inspiration from. In particular, metallic chiral metasurfaces have demonstrated large circular and linear dichroism of light which can be used, for example, for probing different enantiomers of biological molecules. Moreover, the precise control, through designs on demand, of the output polarization state of light impinging on a metasurface, makes this kind of structures particularly relevant for polarization-based telecommunication protocols. The reduced scale of the metasurfaces makes them also appealing for integration with nanomechanical elements, adding new dynamical features to their otherwise static or quasi-static polarization properties. To this end we designed, fabricated and characterized an all-dielectric metasurface on a suspended nanomembrane. Actuating the membrane mechanical motion, we show how the metasurface reflectance response can be modified, according to the spectral region of operation, with a corresponding intensity modulation or polarization conversion. The broad mechanical resonance at atmospheric pressure, centered at about 400 kHz, makes the metasurfaces structure suitable for high-frequency operation, mainly limited by the piezo-actuator controlling the mechanical displacement, which in our experiment reached modulation frequencies exceeding 1.3 MHz

    Real-time optical dimensional metrology via diffractometry for nanofabrication

    Get PDF
    The ICN2 is funded by the CERCA programme/ Generalitat de Catalunya.Surface patterning technologies represent a worldwide growing industry, creating smart surfaces and micro/nanoscale device. The advent of large-area, high-speed imprinting technologies has created an ever-growing need for rapid and non-destructive dimensional metrology techniques to keep pace with the speed of production. Here we present a new real-time optical scatterometry technique, applicable at the mesoscale when optical inspection produces multiple orders of diffraction. We validate this method by inspecting multiple silicon gratings with a variety of structural parameters. These measurements are cross-referenced with FIB, SEM and scanning stylus profilometry. Finally, we measure thermally imprinted structures as a function of imprinting temperature in order to demonstrate the method suitable for in-line quality control in nanoimprint lithography

    Electron beam induced electronic transport in alkyl amine-intercalated VOx nanotubes

    Get PDF
    The electron beam induced electronic transport in primary alkyl amine-intercalated V2O5 nanotubes is investigated where the organic amine molecules are employed as molecular conductive wires to an aminosilanized substrate surface and contacted to Au interdigitated electrode contacts. The results demonstrate that the high conductivity of the nanotubes is related to the non-resonant tunnelling through the amine molecules and a reduced polaron hopping conduction through the vanadium oxide itself. Both nanotube networks and individual nanotubes exhibit similarly high conductivities where the minority carrier transport is bias dependent and nanotube diameter invariant

    Thermal rectification and thermal logic gates in graded alloy semiconductors

    Get PDF
    Classical thermal rectification arises from the contact between two dissimilar bulk materials, each with a thermal conductivity (k) with a different temperature dependence. Here, we study thermal rectification in a SiGe alloy with a spatial dependence on the atomic composition. Rectification factors (R = k/k) of up to 3.41 were found. We also demonstrate the suitability of such an alloy for logic gates using a thermal AND gate as an example by controlling the thermal conductivity profile via the alloy composition. This system is readily extendable to other alloys, since it only depends on the effective thermal conductivity. These thermal devices are inherently advantageous alternatives to their electric counterparts, as they may be able to take advantage of otherwise undesired waste heat in the surroundings. Furthermore, the demonstration of logic operations is a step towards thermal computation

    Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices

    Get PDF
    Thin layers of indium tin oxide are widely used as transparent coatings and electrodes in solar energy cells, flat-panel displays, antireflection coatings, radiation protection and lithium-ion battery materials, because they have the characteristics of low resistivity, strong absorption at ultraviolet wavelengths, high transmission in the visible, high reflectivity in the far-infrared and strong attenuation in the microwave region. However, there is often a trade-off between electrical conductivity and transparency at visible wavelengths for indium tin oxide and other transparent conducting oxides. Here, we report the growth of layers of indium tin oxide nanowires that show optimum electronic and photonic properties and demonstrate their use as fully transparent top contacts in the visible to near-infrared region for light-emitting devices

    Modification of Akhieser mechanism in Si nanomembranes and thermal conductivity dependence of the Q-factor of high frequency nanoresonators

    Get PDF
    We present and validate a reformulated Akhieser model that takes into account the reduction of thermal conductivity due to the impact of boundary scattering on the thermal phonons' lifetime. We consider silicon nanomembranes with mechanical mode frequencies in the GHz range as textbook examples of nanoresonators. The model successfully accounts for the measured shortening of the mechanical mode lifetime. Moreover, the thermal conductivity is extracted from the measured lifetime of the mechanical modes in the high-frequency regime, thereby demonstrating that the Q-factor can be used as an indication of the thermal conductivity and/or diffusivity of a mechanical resonator

    On the Enhancement of the Thermal Conductivity of Graphene-Based Nanofluids

    Get PDF
    Heat transfer fluids have been extensively used in both low-temperature and high temperature applications (e.g. microelectronics cooling and concentrated solar power). However, their low thermal conductivity is still a limit on performance. One way to enhance thermal properties is to disperse nanomaterials, such as graphene flakes in the base fluid. In this work, we have developed highly stable DMAc-graphene nanofluids with enhanced thermal properties. Furthermore, the displacement of several Raman bands as a function of graphene concentration in DMAc suggests that the solvent molecules are able to interact with graphene surfaces strongly

    Anderson Photon-Phonon Colocalization in Certain Random Superlattices

    Get PDF
    Fundamental observations in physics ranging from gravitational wave detection to laser cooling of a nanomechanical oscillator into its quantum ground state rely on the interaction between the optical and the mechanical degrees of freedom. A key parameter to engineer this interaction is the spatial overlap between the two fields, optimized in carefully designed resonators on a case-by-case basis. Disorder is an alternative strategy to confine light and sound at the nanoscale. However, it lacks an a priori mechanism guaranteeing a high degree of colocalization due to the inherently complex nature of the underlying interference processes. Here, we propose a way to address this challenge by using GaAs/AlAs vertical distributed Bragg reflectors with embedded geometrical disorder. Because of a remarkable coincidence in the physical parameters governing light and motion propagation in these two materials, the equations for both longitudinal acoustic waves and normal-incidence light become practically equivalent for excitations of the same wavelength. This guarantees spatial overlap between the electromagnetic and displacement fields of specific photon-phonon pairs, leading to strong light-matter interaction. In particular, a statistical enhancement in the vacuum optomechanical coupling rate, go, is found, making this system a promising candidate to explore Anderson localization of high frequency (∼20 GHz) phonons enabled by cavity optomechanics. The colocalization effect shown here unlocks the access to unexplored localization phenomena and the engineering of light-matter interactions mediated by Anderson-localized states

    Modification of Akhieser mechanism in Si nanomembranes and thermal conductivity dependence of the Q-factor of high frequency nanoresonators

    Get PDF
    We present and validate a reformulated Akhieser model that takes into account the reduction of thermal conductivity due to the impact of boundary scattering on the thermal phonons' lifetime. We consider silicon nanomembranes with mechanical mode frequencies in the GHz range as textbook examples of nanoresonators. The model successfully accounts for the measured shortening of the mechanical mode lifetime. Moreover, the thermal conductivity is extracted from the measured lifetime of the mechanical modes in the high-frequency regime, thereby demonstrating that the Q-factor can be used as an indication of the thermal conductivity and/or diffusivity of a mechanical resonator
    corecore