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Fundamental concepts in quantum physics and technological applications ranging from the de-
tection of gravitational waves to the generation of stimulated Brillouin scattering rely on the in-
teraction between the optical and the mechanical degrees of freedom. A key parameter to engineer
this interaction is the spatial overlap between the two fields, optimized in carefully designed res-
onators on a case-by-case basis. Disorder is an alternative strategy to confine light and sound at the
nanoscale. However, it lacks an a priori mechanism guaranteeing a high degree of co-localization
due to the inherently complex nature of the underlying interference process. Here, we propose a way
to address this challenge by using GaAs/AlAs vertical distributed Bragg reflectors with embedded
geometrical disorder. Due to a remarkable coincidence in the physical parameters governing light
and motion propagation in these two materials, the equations for both longitudinal acoustic waves
in the growth direction and normal-incidence light become practically equivalent for excitations of
the same wavelength. This guarantees spatial overlap between photons and phonons leading to a
statistically significant enhancement in the vacuum optomechanical coupling rate, g0, and making
this system a promising candidate to explore Anderson localization of high frequency (∼ 20 GHz)
phonons enabled by cavity optomechanics.

The interaction between electromagnetic radiation and me-
chanical motion through radiation pressure, photoelasticity or
thermoelasticity [1–3] in optomechanical systems spans at least
twenty orders of magnitude in mass and ten in frequency [4].
These systems are suited to test fundamental quantum physics
with macroscopic objects [5, 6] and are promising candidates as
transducers in quantum systems [7], ultra-high sensitivity mass
and force sensors [8], high bandwidth accelerometers [9], opti-
cal delay-lines [10], high-tunability optical filters [11] and wave-
length conversion [12]. By designing and optimizing a defect in
a periodically patterned slab structure [13, 14], it is possible
to achieve photon and phonon confinement with control of both
the coupling efficiency and the dissipation channels [3, 15] using
a silicon-compatible technology [16]. Nevertheless, unavoidable
fabrication imperfections open undesirable leakage channels for
photons and phonons that degrade both the mechanical and
optical quality (Q-)factors [17], leading to a reduced optome-
chanical interaction and limiting the ambition of design efforts.
Further reducing fabrication disorder [18] or minimizing its ef-
fect [19] have been the main approaches to circumvent this issue.
However, disorder can be used to confine light and mechanical
motion within silicon nanobeams to explore cavity optomechan-
ics [20]. This approach also points to the use of optomechanical
displacement read-out as a detection mechanism to probe the
fundamental nature of Anderson localization of GHz phonons.
Nevertheless, the electromagnetic and displacement fields inter-
fere independently within the perturbed structure and hardly
co-localize, thus hindering the maximum achievable value of the
vacuum optomechanical coupling rate g0.

Single-molecules [21], high-stress silicon nitride mem-
branes [7], epitaxially-grown planar distributed Bragg reflectors
(DBRs) [22] or micropillars [23, 24], are alternatives to study
cavity optomechanics in regimes otherwise difficult to explore
with optomechanical crystals fabricated with standard electron-
beam lithography. High mechanical frequencies Ωm and/or me-
chanical quality factors Qm could enable quantum coherent con-
trol of both the mechanical resonator and the light field without
pre-cooling the thermal bath of the system, thus alleviating the
disadvantages imposed by cryogenic temperatures. Molecular
beam epitaxy (MBE) grown planar superlattices with different
acoustic and optical impedances are an ideal platform for time-
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Figure 1: Phonon localization in disordered
GaAs/AlAs superlattices. (a) Transmission spectrum of
perturbed GaAs/AlAs superlattices (d1=73.48 nm, d2=61.88
nm, N=600), with Gaussian disorder N (0, σ2) in the position
of the interface inside the unit cell. (b) Localization length ξ nor-
malized by the unit cell thickness D for several standard devia-
tions σ. The lines that serve as a guide to the eye are computed
as an average over small frequency ranges. (c) Schematic of a
perfect superlattice (σ = 0) and a perturbed one (σ = 0.15 ·D)
on a thick GaAs substrate.

resolved room-temperature cavity optomechanics [24, 25] with
up to THz mechanical vibrations. In particular, the GaAs/AlAs
Fabry-Pérot resonators proposed in Ref. [22] are designed to
confine photons optimally and behave simultaneously as res-
onators for acoustic phonons with the same wavelength, quality
factor and field profile. Here, we show that any supperlattice
composed by an arbitrary combination of these two materials
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Figure 2: Photon-phonon co-localization. (a) Optical
and acoustic transmission spectra of a disordered GaAs/AlAs
superlattice with d1=73.48 nm, d2=61.88 nm, N=600 and
σ=0.15 ·D at the low-frequency optical and mechanical band-
gap edge, respectively. The energy density of the displacement
field u(z) and the electric field E(z) of the highlighted pair in
(d) with a red dot are plotted in (b) and (c), showing perfect
co-localization. The resonant frequencies of all the mechanical
and optical eigenmodes are mapped onto each other and plotted
in (d).

exhibits almost the same mechanical and optical interference
pattern even when induced by disorder. We propose, theoret-
ically, to use GaAs/AlAs disordered multilayers as a cavity-
optomechanical system to enable optomechanical phenomena in
the Anderson-localization regime and to explore Anderson local-
ization of coupled (photon-phonon) excitations [26]. Moreover,
due to the optomechanical nature of the detection mechanism in
time-resolved pump-probe experimental techniques [27], these
systems provide an ideal platform to actually probe Anderson
localization of mechanical vibrations in very high frequency re-
gions so far unexplored.

To study the optical and acoustic properties of these superlat-
tices, we use a transfer matrix formalism [1] (see supplementary
information). In this system, the solution to the continuum-
mechanics equations in absence of sources and to the Maxwell’s
equations at normal incidence can be solved with exactly the
same formalism [2], provided that the acoustic impedances Zi
are replaced by refractive indexes ni and the longitudinal acous-
tic velocities vi by the speed of light, c

ni
, in the different i layers.

Using standard values [30] for the optical and mechanical coef-
ficients for optical photons and microwave phonons in AlAs (1)
and GaAs (2), we have n1/n2 = 0.838 ∼ 0.834 = Z1/Z2 and
n1/n2 = 0.838 ∼ 0.844 = v2/v1, which formally implies

Mac(ω) ∼= Mop(Kω), (1)

where Mac(ω) and Mop(Kω) are the matrices connecting the
acoustic and optical coefficients in the propagating/counter-
propagating plane-wave basis at two consecutive layers and

K = c/ni
vi

(details in the supplementary material). Any arbi-

trary GaAs/AlAs superlattice exhibiting a mechanical eigen-
mode with a field profile u(z) and frequency Ωm will also sup-
port an optical eigenmode with a frequency ωo ∼ K ·Ωm and
field profile E(z) ∼ u(z). To illustrate this, we use a DBR
structure with a unit cell formed by an AlAs layer of thickness
d1 = 73.48 nm and a GaAs layer of thickness d2 = 61.88 nm
(technically known as a λ/4, λ/4 DBR). This structure opens
simultaneously a maximum-width first-order band-gap with a
center wavelength of 870 nm for optical photons and 19 GHz
for microwave phonons. We fix GaAs for the substrate and the
surface layers in the simulated structure and we introduce a
zero-mean Gaussian disorder in the position of the interface
between the two materials with varying standard deviation σ,
whilst the period D = d1 + d2 = 135.36 nm is kept constant.
Fig. 1 shows the acoustic transmission spectrum of a disordered
superlattice with N = 600 periods for different disorder levels,
σ, around the first-order odd band-gap.

Non-interacting electronic Bloch modes in atomic crystals un-
dergo random multiple scattering in the presence of disorder,
eventually leading to the (Anderson) localization of the wave
function [31]. The electromagnetic and displacement fields in
artificial photonic and phononic crystals are also sensitive to dis-
order, especially at the band-gap edges where the group velocity
falls (ideally) to zero [32], equally giving rise to disorder-induced
or Anderson localization. In a one-dimensional structure such as
a GaAs/AlAs superlattice, the presence of Anderson-localized
modes can be detected in the reflection/transmission spectrum
through Lorentzian-shaped resonances centered near the corre-
sponding eigenfrequencies with a free spectral range δω larger
than the mean linewidth ∆ω [33]. Fig. 1(a) shows these narrow
mechanical resonances in the transmission spectra visibly satis-
fying such criteria and populating a spectral band that broadens
with increasing disorder level [34]. The ensemble-averaged de-
cay of such localized modes occurs with a localization length, ξ.
It determines the minimum length of a finite sample for which
it is possible to statistically observe these modes as L ≥ ξ [35],
where L = N ·D is the total length of the structure. Fig. 1(b)
computes ξ as a function of disorder level and frequency, using
the scaling of the ensemble-averaged logarithmic transmission
< log(T ) > ∝ −L

ξ
and shows that the system is deep in the

localization regime (ξ � L) near the band edges for the range
of disorder considered.

When the condition (5) is fulfilled, the optical spectrum is al-
most identical to the mechanical one when plotted with scaled
frequency, as shown in Fig. 2(a). The field profiles of a pair of
optical and mechanical modes with same scaled frequency are
also perfectly overlapping in real space, as shown in Fig. 2(b)
and (c), respectively. When the mechanical and optical reso-
nant frequencies are mapped onto each other in spectral order,
we recover - Fig. 2(d) - the predicted spectral behavior with

ωo ≈ K ·Ωm and K = 1.82 · 107 ∼ c/ni
vi

. These well-confined

spatially-overlapping modes can interact with each other and
are therefore candidates to explore optomechanical effects. As
expected from confined mechanical and light modes, the de-
formation profile associated with a normal mode um(z) will
locally change the optical properties of the structure. Thus,
the electromagnetic normal modes En(z) will be affected, giv-
ing rise to an optical frequency shift (dispersive optomechan-
ics) and a quality factor change (dissipative optomechanics). In
GaAs/AlAs superlattices and in the frequency range of inter-
est, two main acousto-optic interaction mechanisms need to be
considered [36, 37]. First, the displacement of the N + 1 bound-
aries, or moving boundary effect, will change the interference
pattern of multiple light paths. Second, the photoelastic effect
will induce a change in the bulk permittivity tensor ε that can
be written as the tensor product d(ε−1)ij = PijklUkl, where U
is the second-order strain tensor and P the fourth-order photoe-
lastic tensor [38]. To account for the frequency shift induced by
these two mechanisms, first-order perturbation theory applied
to Maxwell’s equations [39] in the multilayered system leads to
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the following expressions:

gmb = −ωo
2

∑N+1
i=1 um(zi)(εi−1 − εi)|En(zi)|2∫ L

0
ε(z)|En(z)|2dz

xzpf (2a)

gpe = −ωo
2

∫ 0

L
P12(z) ∂um

∂z
(z)ε(z)2|En(z)|2∫ L

0
ε(z)|En(z)|2dz

xzpf (2b)

The strength of the coupling parameter g0 = gmb+gpe between
two (m-mechanical, n-optical) eigenmodes strongly depends on
the overlap of the displacement um(z) or strain ∂um

∂z
(z) field

with the electric field intensity |En(z)|2, which highlights the
importance of co-localizing the displacement and the electric
field profiles. Since our model is by definition one-dimensional,
we have chosen an arbitrary size in the x-y plane of 2 × 2
µm2 -for the area excited by a focused laser beam- in order to
calculate the effective mass meff of the mechanical resonator

and the zero point fluctuations xzpf =
√

h̄
2meffΩm

. To quantify

the role of co-localization in the optomechanical coupling, we
will evaluate g0 in the GaAs/AlAs alloy as well as in a Si/Ge
supperlattice where the condition (5) is not fulfilled.

To calculate the terms 2a and 2b, we apply the transfer
matrix method with outgoing boundary conditions which
define quasi-normal modes [40] with a complex eigenfrequency
ω = ωr - jωi (see details in the supplementary information).
The imaginary part accounts for losses through the walls of the
resonator, uppermost GaAs layer and bottom most AlAs layer
in the superlattice, which is equivalent to using a Perfectly
Matched Layer (PML) in numerical simulations (FEM, FDTD,
etc.) on three dimensional structures [41]. In particular, we
use the standard complex root-finding Müller method to solve
the fundamental equation, calculating the initial values from
the central frequency and the linewidth of the transmission
resonances. When the method failed to converge, usually due
to closely spaced eigenvalues, we used a method based on the
argument principle method (APM) of complex analysis [42].
The boundary conditions assumed correspond to a semi-infinite
substrate and a free-moving surface. For a large number of
layers, however, the boundary conditions have essentially
negligible effect precisely deep in the localization regime. Based
on these arguments, we use the resonances of the mechanical
transmission spectra to extract initial values for the real and
imaginary part of the eigenfrequencies.

Finally, we calculate the vacuum optomechanical coupling
rate g0 - Fig. 3 - between all the photonic and phononic
Anderson-localized modes found in a set of 1500 GaAs/AlAs
superlattices with the same structural parameters as detailed
above and a fixed level of disorder of σ = 0.15 ·D. The cou-
pling values in the densely-packed diagonal of Fig. 3(a), i.e.,
for perfectly co-localized photon-phonon pairs, exhibit values
higher than the rest. The probability density function of the
vacuum optomechanical coupling rate g0 is plotted in Fig. 3(c)
either considering all eigenmode pairs (blue bars) or only those
perfectly co-localized (red bars), pointing out a marked statisti-
cal evidence for this material combination. Due to the strongly
dispersive nature of the localization length ξ (Fig 1(b)), we con-
sider only a narrow frequency window thus minimizing the ef-
fect of varying the effective volume of the eigenmodes. To point
out explicitly the unique character of the combination of GaAs
and AlAs to engineer the co-localization of mechanical and op-
tical modes, we apply the same calculation to Si/Ge disordered
superlattices. The Si and Ge thicknesses (d1 = 115.97 nm,
d2 = 93.88 nm, N = 600) are chosen to shift the band edge of
interest at approximately half the frequency of the GaAs/AlAs
superlattice to avoid the effect of absorption. The disorder level
is also tuned to σ = 0.11 ·D to satisfy the condition for the me-
chanical localization length ξSi/Ge ∼ ξGaAs/AlAs. Under these
conditions, the Si/Ge superlattices show no predictable modal
structure as plotted in Fig. 3(b).
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Figure 3: Vacuum optomechanical coupling rate g0 in
disordered multilayered systems. (a) Scatter plot of the
mechanical and optical frequencies of the resonant modes found
in a set of 1500 disordered GaAs/AlAs (left) and Si/Ge (right)
multilayers, the color represents the coupling rate g0 between
the considered pair in logarithmic scale. (b) Probability density
function of the coupling rate g0 extracted from the left panel
in (a) by considering all photon-phonon pairs (blue) and only
perfectly co-localized pairs (red). The thick lines are only guides
to the eye.

In conclusion, we present an analysis of Anderson co-
localization of two wave fields in a particular set of random
superlattices, with emphasis in their coupling properties. Just
by selecting GaAs and AlAs as the superlattice materials, it is
possible to enhance their optomechanical coupling and allows
further optimization trough field engineering while relaxes the
design and fabrication accuracy. Our calculations also demon-
strate the potential of such a system to explore optomechanical
coupling in the Anderson-localization regime by providing quan-
titative evidence of the role played by spatial co-localization
of mechanical and optical excitations in the structure. Light-
matter interaction in GaAs/AlAs DBR-based cavity structures
appears to be a natural and appropriate choice to explore An-
derson localization of coupled excitations and to observe An-
derson localization of phonons in frequency ranges so far unex-
plored. The ease of integration of quantum wells and quantum
dots [43] during the MBE growth enables the study of cavity
quantum-electrodynamics in the Anderson-localization regime
coupled to the mechanical motion of a high frequency nanome-
chanical oscillator, as well as to explore the role of phonon-
coupling in the performance of random lasers [44]. Finally, the
discussed structures can be easily scaled down to study An-
derson localization of sub-THz vibrations with extended light
modes.
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I. SUPPLEMENTARY INFORMATION

In our calculations, we use transfer matrix formalism [1].
In particular, we consider time-harmonic longitudinal acoustic
waves with no in-plane dependence, i.e., u(r, t) ≡ uz(z)e

jωtez,
where ω is the mechanical frequency. The solution to the
continuum-mechanics equations in the absence of sources in
the bulk of layer i can be written as a linear combination
of a propagating and counter-propagating plane wave, i.e.,
uz(z) = aie

jqiz + bie
−jqiz, with the wave-vector qi = ω

vi
. Im-

posing continuity on both the displacement field and the stress
at the interfaces and accounting for propagation within the lay-
ers, the coefficients in the plane wave basis on the incident layer,
here the left side of the superlattice, i.e. the first solid interface,
(ad0, b

d
o) are algebraically connected to the solution on the right

side of the last layer, i.e. top of the substrate, (aN+1, bn+1) as:[
ad0
bd0

]
= Mac ·

[
aN+1

bN+1

]
with Mac = (

N−1∏
i

Ii,i+1 ·Yi+1) · IN,N+1

(3)
where the subindex ac in the matrix Mac stands for acoustic.
The Ii,i+1 is an interface matrix connecting the coefficients in
the propagating/counter-propagating plane wave basis at the
end of layer i to the ones at the beginning of layer i+ 1 and Yi

propagates the solution through the thickness of layer i:

Ii,i+1 =

[
1 +

Zi+1

Zi
1− Zi+1

Zi

1− Zi+1

Zi
1 +

Zi+1

Zi

]
(4a)

Yi =

[
e−jqidi 0

0 e+jqidi

]
(4b)

Interestingly, Maxwell’s equations at normal incidence in
such a multilayer structure can also be solved with exactly the
same formalism [2], provided that the acoustic impedances Zi
are replaced by refractive indexes ni and the longitudinal acous-
tic velocities vi by light speeds c

ni
in matrices (4a) and (4b). A

direct consequence of the equivalence in the formalism is:

{
Zi+1

Zi
=

ni+1

ni
c/ni
vi

= K

}
∀i ∈ [0, N + 1] =⇒ Mac(ω) = Mop(Kω)

(5)

For any arbitrary multilayered structure and, in particular,
any combination of the two materials (A and B) forming
a superlattice, condition (5) is extremely stringent. The
contrast between their acoustic impedances (ZA/ZB) and their
refractive indexes (nA/nB) is not equal, neither the ratio of

the propagation speeds (
c/nA/B

vA/B
) stays constant. The optical

matrix Mop is, therefore, different than the acoustic one which
gives rise to independent acoustic and optical interference
processes. This leads to an unavoidably different mechanical
and optical field profiles where co-localization occurs very
rarely. Remarkably, for GaAs and AlAs, in non-dispersive
frequency regions, this condition is approximately satisfied,
which is the mechanism to guarantee an almost perfect spatial
co-localization of the electromagnetic and the mechanical fields.

The use of different types of boundary conditions for the
physical problem in hand gives rise to different applications of
the transfer matrix method:

• For transmission/reflection computations, the problem is
set with ad0 = 1, bd0 = r, aN+1 = t, bN+1 = 0, which
implies r = M21

M11
and t = 1

M11
, from which the reflectivity

and transmissivity of the superlattice can be calculated
for any frequency ω.

• For the optical eigenmodes, since the structure is inher-
ently an open structure at both ends, we set ad0 = 0 and
bN+1 = 0, i.e. outgoing boundary conditions. These two
conditions necessarily imply M11(ω) = 0, which is solved
for complex eigenfrequencies ω = ωr - jωi.
• For the mechanical eigenmodes we assume a closed struc-

ture on the top interface and an open structure at the
bottom, i.e. a semi-infinite substrate. A much thicker
substrate thickness than the structures of interest and un-
avoidable sound absorption justify such choice for the bot-
tom interface. The stress-free boundary condition (σ ·n)
on the top interface implies ad0 = 1 and bd0 = 0, while
the outgoing boundary condition at the bottom implies
bN+1 = 0. These conditions imply M21(Ω)−M21(Ω) = 0,
which is solved for complex eigenfrequencies Ω = Ωr -
jΩi.
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