34 research outputs found
Effects of riparian zone buffer widths on vegetation diversity in southern Appalachian headwater catchments
In mountainous areas such as the southern Appalachians USA, riparian zones are difficult to define. Vegetation is a commonly used riparian indicator and plays a key role in protecting water resources, but adequate knowledge of floristic responses to riparian disturbances is lacking. Our objective was to quantify changes in stand-level floristic diversity of riparian plant communities before (2004) and two, three, and seven years after shelterwood harvest using highlead cable-yarding and with differing no cut buffer widths of 0 m, 10 m, and 30 m distance from the stream edge. An unharvested reference stand was also studied for comparison. We examined: (1) differences among treatment sites using a mixed linear model with repeated measures; (2) multivariate relationships between ground-layer species composition and environmental variables (soil water content, light transmittance, tree basal area, shrub density, and distance from stream) using nonmetric multidimensional scaling; and (3) changes in species composition over time using a multi-response permutation procedure. We hypothesized that vegetation responses (i.e., changes in density, species composition, and diversity across the hillslope) will be greatest on harvest sites with an intermediate buffer width (10-m buffer) compared to more extreme (0-m buffer) and less extreme (30-m buffer and no-harvest reference) disturbance intensities. Harvesting initially reduced overstory density and basal area by 83% and 65%, respectively, in the 0-m buffer site; reduced by 50% and 74% in the 10-m buffer site; and reduced by 45% and 29% in the 30-m buffer site. Both the 0-m and 10-m buffer sites showed increased incident light variability across the hillslope after harvesting; whereas, there was no change in the 30-m and reference sites over time. We found significant changes in midstory and ground-layer vegetation in response to harvesting with the greatest responses on the 10-m buffer site, supporting our hypotheses that responses will be greatest on sites with intermediate disturbance. Ground-layer species composition differed significantly over time in the 0-m buffer and 10-m buffer sites (both P \u3c 0.0001), but did not change in the 30-m buffer and reference sites (both P \u3e 0.100). Average compositional dissimilarity increased after seven years, indicating greater within stand heterogeneity (species diversity) after harvesting. These vegetation recovery patterns provide useful information for evaluating management options in riparian zones in the southern Appalachians
Recommended from our members
Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study.
BackgroundPneumothorax can precipitate a life-threatening emergency due to lung collapse and respiratory or circulatory distress. Pneumothorax is typically detected on chest X-ray; however, treatment is reliant on timely review of radiographs. Since current imaging volumes may result in long worklists of radiographs awaiting review, an automated method of prioritizing X-rays with pneumothorax may reduce time to treatment. Our objective was to create a large human-annotated dataset of chest X-rays containing pneumothorax and to train deep convolutional networks to screen for potentially emergent moderate or large pneumothorax at the time of image acquisition.Methods and findingsIn all, 13,292 frontal chest X-rays (3,107 with pneumothorax) were visually annotated by radiologists. This dataset was used to train and evaluate multiple network architectures. Images showing large- or moderate-sized pneumothorax were considered positive, and those with trace or no pneumothorax were considered negative. Images showing small pneumothorax were excluded from training. Using an internal validation set (n = 1,993), we selected the 2 top-performing models; these models were then evaluated on a held-out internal test set based on area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and positive predictive value (PPV). The final internal test was performed initially on a subset with small pneumothorax excluded (as in training; n = 1,701), then on the full test set (n = 1,990), with small pneumothorax included as positive. External evaluation was performed using the National Institutes of Health (NIH) ChestX-ray14 set, a public dataset labeled for chest pathology based on text reports. All images labeled with pneumothorax were considered positive, because the NIH set does not classify pneumothorax by size. In internal testing, our "high sensitivity model" produced a sensitivity of 0.84 (95% CI 0.78-0.90), specificity of 0.90 (95% CI 0.89-0.92), and AUC of 0.94 for the test subset with small pneumothorax excluded. Our "high specificity model" showed sensitivity of 0.80 (95% CI 0.72-0.86), specificity of 0.97 (95% CI 0.96-0.98), and AUC of 0.96 for this set. PPVs were 0.45 (95% CI 0.39-0.51) and 0.71 (95% CI 0.63-0.77), respectively. Internal testing on the full set showed expected decreased performance (sensitivity 0.55, specificity 0.90, and AUC 0.82 for high sensitivity model and sensitivity 0.45, specificity 0.97, and AUC 0.86 for high specificity model). External testing using the NIH dataset showed some further performance decline (sensitivity 0.28-0.49, specificity 0.85-0.97, and AUC 0.75 for both). Due to labeling differences between internal and external datasets, these findings represent a preliminary step towards external validation.ConclusionsWe trained automated classifiers to detect moderate and large pneumothorax in frontal chest X-rays at high levels of performance on held-out test data. These models may provide a high specificity screening solution to detect moderate or large pneumothorax on images collected when human review might be delayed, such as overnight. They are not intended for unsupervised diagnosis of all pneumothoraces, as many small pneumothoraces (and some larger ones) are not detected by the algorithm. Implementation studies are warranted to develop appropriate, effective clinician alerts for the potentially critical finding of pneumothorax, and to assess their impact on reducing time to treatment
Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study.
BACKGROUND:Pneumothorax can precipitate a life-threatening emergency due to lung collapse and respiratory or circulatory distress. Pneumothorax is typically detected on chest X-ray; however, treatment is reliant on timely review of radiographs. Since current imaging volumes may result in long worklists of radiographs awaiting review, an automated method of prioritizing X-rays with pneumothorax may reduce time to treatment. Our objective was to create a large human-annotated dataset of chest X-rays containing pneumothorax and to train deep convolutional networks to screen for potentially emergent moderate or large pneumothorax at the time of image acquisition. METHODS AND FINDINGS:In all, 13,292 frontal chest X-rays (3,107 with pneumothorax) were visually annotated by radiologists. This dataset was used to train and evaluate multiple network architectures. Images showing large- or moderate-sized pneumothorax were considered positive, and those with trace or no pneumothorax were considered negative. Images showing small pneumothorax were excluded from training. Using an internal validation set (n = 1,993), we selected the 2 top-performing models; these models were then evaluated on a held-out internal test set based on area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and positive predictive value (PPV). The final internal test was performed initially on a subset with small pneumothorax excluded (as in training; n = 1,701), then on the full test set (n = 1,990), with small pneumothorax included as positive. External evaluation was performed using the National Institutes of Health (NIH) ChestX-ray14 set, a public dataset labeled for chest pathology based on text reports. All images labeled with pneumothorax were considered positive, because the NIH set does not classify pneumothorax by size. In internal testing, our "high sensitivity model" produced a sensitivity of 0.84 (95% CI 0.78-0.90), specificity of 0.90 (95% CI 0.89-0.92), and AUC of 0.94 for the test subset with small pneumothorax excluded. Our "high specificity model" showed sensitivity of 0.80 (95% CI 0.72-0.86), specificity of 0.97 (95% CI 0.96-0.98), and AUC of 0.96 for this set. PPVs were 0.45 (95% CI 0.39-0.51) and 0.71 (95% CI 0.63-0.77), respectively. Internal testing on the full set showed expected decreased performance (sensitivity 0.55, specificity 0.90, and AUC 0.82 for high sensitivity model and sensitivity 0.45, specificity 0.97, and AUC 0.86 for high specificity model). External testing using the NIH dataset showed some further performance decline (sensitivity 0.28-0.49, specificity 0.85-0.97, and AUC 0.75 for both). Due to labeling differences between internal and external datasets, these findings represent a preliminary step towards external validation. CONCLUSIONS:We trained automated classifiers to detect moderate and large pneumothorax in frontal chest X-rays at high levels of performance on held-out test data. These models may provide a high specificity screening solution to detect moderate or large pneumothorax on images collected when human review might be delayed, such as overnight. They are not intended for unsupervised diagnosis of all pneumothoraces, as many small pneumothoraces (and some larger ones) are not detected by the algorithm. Implementation studies are warranted to develop appropriate, effective clinician alerts for the potentially critical finding of pneumothorax, and to assess their impact on reducing time to treatment
Recommended from our members
Relative preservation of facial expression recognition in posterior cortical atrophy.
ObjectiveTo compare recognition of facial expression (FE) vs recognition of facial identity (FI) in posterior cortical atrophy (PCA), with the hypothesis that FE recognition would be relatively preserved in PCA.MethodsIn this observational study, FI and expression recognition tasks were performed by 194 participants in 4 groups, including 39 with Alzheimer disease (AD) (non-PCA), 49 with behavioral variant frontotemporal dementia (bvFTD), 15 with PCA, and 91 healthy controls. Between-group differences in test scores were compared.ResultsPatients with PCA performed worse than healthy controls in FI and emotion recognition tasks (p < 0.001 for all). Patients with PCA also performed worse than AD and bvFTD groups in FI recognition, with no difference in FE recognition.ConclusionsPatients with PCA have relatively preserved FE recognition compared to FI recognition, as seen in affective blindsight
Deconstructing empathy: Neuroanatomical dissociations between affect sharing and prosocial motivation using a patient lesion model.
Affect sharing and prosocial motivation are integral parts of empathy that are conceptually and mechanistically distinct. We used a neurodegenerative disease (NDG) lesion model to examine the neural correlates of these two aspects of real-world empathic responding. The study enrolled 275 participants, including 44 healthy older controls and 231 patients diagnosed with one of five neurodegenerative diseases (75 Alzheimer's disease, 58 behavioral variant frontotemporal dementia (bvFTD), 42 semantic variant primary progressive aphasia (svPPA), 28 progressive supranuclear palsy, and 28 non-fluent variant primary progressive aphasia (nfvPPA). Informants completed the Revised Self-Monitoring Scale's Sensitivity to the Expressive Behavior of Others (RSMS-EX) subscale and the Interpersonal Reactivity Index's Empathic Concern (IRI-EC) subscale describing the typical empathic behavior of the participants in daily life. Using regression modeling of the voxel based morphometry of T1 brain scans prepared using SPM8 DARTEL-based preprocessing, we isolated the variance independently contributed by the affect sharing and the prosocial motivation elements of empathy as differentially measured by the two scales. We found that the affect sharing component uniquely correlated with volume in right>left medial and lateral temporal lobe structures, including the amygdala and insula, that support emotion recognition, emotion generation, and emotional awareness. Prosocial motivation, in contrast, involved structures such as the nucleus accumbens (NaCC), caudate head, and inferior frontal gyrus (IFG), which suggests that an individual must maintain the capacity to experience reward, to resolve ambiguity, and to inhibit their own emotional experience in order to effectively engage in spontaneous altruism as a component of their empathic response to others
Gene and MicroRNA Expression Responses to Exercise; Relationship with Insulin Sensitivity.
Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.Euglycemic clamps were used to measure insulin sensitivity and muscle biopsies were done at rest and 30 minutes after a single acute exercise bout in 14 healthy participants. Changes in mRNA expression were assessed using microarrays, and miRNA analysis was performed in a subset of 6 of the participants using sequencing techniques. Following exercise, 215 mRNAs were changed at the probe level (Bonferroni-corrected P<0.00000115). Pathway and Gene Ontology analysis showed enrichment in MAP kinase signaling, transcriptional regulation and DNA binding. Changes in several transcription factor mRNAs were correlated with insulin sensitivity, including MYC, r=0.71; SNF1LK, r=0.69; and ATF3, r= 0.61 (5 corrected for false discovery rate). Enrichment in the 5'-UTRs of exercise-responsive genes suggested regulation by common transcription factors, especially EGR1. miRNA species of interest that changed after exercise included miR-378, which is located in an intron of the PPARGC1B gene.These results indicate that transcription factor gene expression responses to exercise depend highly on insulin sensitivity in healthy people. The overall pattern suggests a coordinated cycle by which exercise and insulin sensitivity regulate gene expression in muscle
Neuroanatomy of Shared Conversational Laughter in Neurodegenerative Disease
Perceiving another person's emotional expression often sparks a corresponding signal in the observer. Shared conversational laughter is a familiar example. Prior studies of shared laughter have made use of task-based functional neuroimaging. While these methods offer insight in a controlled setting, the ecological validity of such controlled tasks has limitations. Here, we investigate the neural correlates of shared laughter in patients with one of a variety of neurodegenerative disease syndromes (N = 75), including Alzheimer's disease (AD), behavioral variant frontotemporal dementia (bvFTD), right and left temporal variants of semantic dementia (rtvFTD, svPPA), nonfluent/agrammatic primary progressive aphasia (nfvPPA), corticobasal syndrome (CBS), and progressive supranuclear palsy (PSP). Patients were recorded in a brief unrehearsed conversation with a partner (e.g., a friend or family member). Laughter was manually labeled, and an automated system was used to assess the timing of that laughter relative to the partner's laughter. The probability of each participant with neurodegenerative disease laughing during or shortly after his or her partners' laughter was compared to differences in brain morphology using voxel-based morphometry, thresholded based on cluster size and a permutation method and including age, sex, magnet strength, disease-specific atrophy and total intracranial volumes as covariates. While no significant correlations were found at the critical T value, at a corrected voxelwise threshold of p < 0.005, a cluster in the left posterior cingulate gyrus demonstrated a trend at p = 0.08 (T = 4.54). Exploratory analysis with a voxelwise threshold of p = 0.001 also suggests involvement of the left precuneus (T = 3.91) and right fusiform gyrus (T = 3.86). The precuneus has been previously implicated in the detection of socially complex laughter, and the fusiform gyrus has a well-described role in the recognition and processing of others' emotional cues. This study is limited by a relatively small sample size given the number of covariates. While further investigation is needed, these results support our understanding of the neural underpinnings of shared conversational laughter