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Abstract

Background: Glioblastoma is the most aggressive primary central nervous tumor and carries a very poor prognosis.
Invasion precludes effective treatment and virtually assures tumor recurrence. In the current study, we applied
analytical and bioinformatics approaches to identify a set of microRNAs (miRs) from several different human
glioblastoma cell lines that exhibit significant differential expression between migratory (edge) and migration-
restricted (core) cell populations. The hypothesis of the study is that differential expression of miRs provides an
epigenetic mechanism to drive cell migration and invasion.

Results: Our research data comprise gene expression values for a set of 805 human miRs collected from matched
pairs of migratory and migration-restricted cell populations from seven different glioblastoma cell lines. We identified
62 down-regulated and 2 up-regulated miRs that exhibit significant differential expression in the migratory (edge) cell
population compared to matched migration-restricted (core) cells. We then conducted target prediction and pathway
enrichment analysis with these miRs to investigate potential associated gene and pathway targets. Several miRs in the
list appear to directly target apoptosis related genes. The analysis identifies a set of genes that are predicted by 3 different

therapeutic interventions.

algorithms, further emphasizing the potential validity of these miRs to promote glioblastoma.

Conclusions: The results of this study identify a set of miRs with potential for decreased expression in invasive
glioblastoma cells. The verification of these miRs and their associated targeted proteins provides new insights for
further investigation into therapeutic interventions. The methodological approaches employed here could be applied
to the study of other diseases to provide biomedical researchers and clinicians with increased opportunities for
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Background

Glioblastoma (GB) is the most common primary central
nervous system tumor and accounts for approximately
40% of all primary malignant brain tumors. GB is a het-
erogeneous group of tumors associated with a very poor
clinical prognosis. The median survival for patients with
newly diagnosed glioblastoma is approximately 15 months
and declines to approximately 8 months for patients with
recurrent glioma [1,2]. The 6-month progression free
survival for glioblastoma is less than 20%. The biology
of malignant glioma presents significant problems for
successful clinical treatment. Chief among these hur-
dles is the aggressive local invasion of malignant cells
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from the original tumor. The heightened commitment to
migration and reduced proliferation of invasive glioma
cells makes complete surgical resection impossible, in-
creases their resistance to chemotherapeutic agents, and
reduces the efficacy of radiation treatment, which virtually
assures tumor recurrence. Improved clinical treatment
will therefore ultimately require a more thorough under-
standing of the molecular mechanisms that regulate the
invasion of glioma cells from primary tumor sites as well
as the identification and specific targeting of the critical
drivers of glioma invasion.

The pathobiology of GB is characterized by temporal
and spatial alterations in gene expression that produce
phenotypically distinct cell populations. Necrosis, micro-
vascular proliferation, and increased staining for prolifer-
ation markers histopathologically characterize the highly
cellular tumor core. In contrast, invasive cells at the

© 2014 Bradley et al, licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


https://core.ac.uk/display/195033981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:barrie.bradley@asu.edu
http://creativecommons.org/licenses/by/2.0

Bradley et al. BMC Bioinformatics 2014, 15:21
http://www.biomedcentral.com/1471-2105/15/21

tumor — normal brain interface exhibit a decrease in the
expression of proliferation markers and a relative in-
crease in the expression of pro-apoptotic genes [3,4].
Gene expression profiling of laser-captured micro dis-
sected cells from paired GB patient tumor core and in-
vasive edge established an invasion signature of genes
differentially expressed in the invasive cell population.
This gene set represents potential targets to limit glioma
dispersal and decreased therapeutic resistance as the
invasion process strongly up-regulates survival signaling
pathways [4-6].

The molecular mechanisms regulating the expression
of pro-invasive or pro-proliferation signaling proteins are
not completely understood. One potential mechanism
of post-transcriptional regulation of gene expression is
through microRNAs (miRs). miRs are a highly diverse
class of small (~20-22 nucleotides), non-protein coding
single stranded RNA molecules that play a central role
in a broad range of normal biological processes by dy-
namically regulating protein expression [7]. miR activity
has also been linked to various cancers where miRs can
function either as potential oncogenes or as tumor sup-
pressors [8]. A potential role for a number of miRs in GB
progression has been reported in recent studies [9-11].
The majority of the studies were performed with cultured
glioma cell lines or primary GB patient samples to anno-
tate global changes in miR expression, but did not investi-
gate miR expression in distinct glioma cell populations. In
the current study, we investigated a dataset of miRs col-
lected from a matched pair of migration-restricted glioma
cell and migratory glioma cell populations to identify dif-
ferentially expressed miRs associated with each cell popu-
lation. We conducted pathway enrichment analysis with
these miRs to investigate potential associated gene targets.
Signaling effectors regulated by the identified differentially
expressed miRs represents a potentially rich set of targets
for therapeutic development.

Results
The differential expression (mean edge cell expression
minus mean core cell expression) was down-regulated in
193 (24%), and up-regulated in 612 (76%) of the 805
miRs in our study. Of the 193 down-regulated miRs, 62
(32%) exhibited both significant FDR corrected p-values
and a > 2x fold change, while 131 (68%) did not. Of the
610 up-regulated miRs, 2 (<1%) exhibited both signifi-
cant FDR corrected p-values and a > 2x fold change,
while 610 (>99%) did not. The results indicate that there
is a statistically significant relationship between expres-
sion direction (down-regulated vs. up-regulated) and dif-
ferential expression p-value / fold change (Fisher’s Exact
Test Two-sided p < 0.001).

A plot of the differential expression of these data (vol-
cano scatter plot) illustrates graphically the distribution
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of miRs that are both significant (two-tailed ¢-test) and
meaningful (> 2x fold change) (Figure 1). Those miRs lo-
cated both above the FDR corrected -Log;, p-value
(1.69, horizontal dashed line), and a greater than 2x Log,
fold change (< -1.0 or > 1.0, vertical dashed lines), are
considered both significant and meaningful. Grey col-
ored dots in the volcano plot represent those miRs that
are either not significant or do not have a > twofold dif-
ferential expression. Black dots represent those miRs
that exhibit both a significant differential expression and
a > 2x fold change, and thus represent those 64 miRs
considered for further study (Table 1).

A total of 64 miRs were identified as exhibiting both
significant FDR corrected p-values and a > 2x fold
change. Of these 64 miRs, migratory edge cell expres-
sions were down-regulated 2% of the time (mean -0.03,
SD not relevant as only one such data point) and up-
regulated 98% of the time (mean 1.85, SD 1.61).
Migration-restricted core cell expressions were down-
regulated 3% of the time (mean -0.25, SD 0.04) and up-
regulated 97% of the time (mean 4.00, SD 1.91). Con-
versely, for the differential cell population expression,
mean edge cell expression minus mean core cell expres-
sion, the differential expression was down-regulated 97%
of the time (mean -2.14, SD 0.54) and up-regulated 3%
of the time (mean 1.02, SD 0.18) (Table 2).

Recent studies have demonstrated that many of the
significant miRs elucidated in our study have been previ-
ously implicated in tumor migration/invasion in other
cancers, including malignancies in the brain. For some
of our identified miRs however, we were unable to find
any prior literature that reported validated gene targets.
To address this limitation, we utilized several available
algorithms that predict gene targets in silico, such as
TargetScan or PicTar. Additionally, resources are avail-
able that perform enrichment calculations on represen-
tative gene categories or biological pathways. These
groups could include such categories as signal transduc-
tion, cytoskeletal organization, adhesion, apoptosis, pro-
liferation, or transcription factors [12]. For glioma cell
migration, categories such as adhesion and cytoskeletal
organization would be important to study further for
verification. We turned to these bioinformatics ap-
proaches to obtain a wider view of potential genes and
pathways that could be targeted by these identified
miRs.

We employed the DIANA-mirPath [13] pathway ana-
lysis web-server to accomplish both target prediction
and enrichment analysis. We used three gene target pre-
diction algorithms in mirPath: TargetScan v5, PicTar 4-
way, and DIANA MicroT v4 to analyze the datasets as
separate jobs (Figure 2). After the gene targets were pre-
dicted, mirPath calculated the enrichment of genes in all
biological pathways available in the KEGG database.
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Figure 1 Plot of differential expression for glioblastoma edge and core cells. Negative Log;, p-values for each of the 805 miRs were
plotted on the y-axis and Log, normalized fold change expression levels on the x-axis. The threshold Benjamini-Hochberg corrected -Log;
p-value (1.687) is superimposed on the volcano plot for reference (horizontal dashed line) to identify miRs with significant differential expression
(a=0.05). Vertical dashed lines at —1.0 and 1.0 Log, fold change represent twofold threshold values. Black dots represent the 64 miRs identified
as exhibiting both a significant FDR corrected p-value and a = twofold change in expression level.

Table 1 miRs identified for study

hsa-let-7a
hsa-let-7b
hsa-let-7¢c
hsa-let-7d
hsa-let-7e
hsa-let-7f
hsa-let-7 g
hsa-let-7i
hsa-miR-100
hsa-miR-103
hsa-miR-106b
hsa-miR-107
hsa-miR-10b

hsa-miR-125a-5p
hsa-miR-125b
hsa-miR-130a
hsa-miR-140-5p
hsa-miR-151-3p
hsa-miR-151-5p
hsa-miR-15a
hsa-miR-15b
hsa-miR-16
hsa-miR-17
hsa-miR-17*
hsa-miR-181a
hsa-miR-181b

hsa-miR-197
hsa-miR-19a
hsa-miR-19b
hsa-miR-20a
hsa-miR-20b
hsa-miR-21
hsa-miR-22
hsa-miR-221
hsa-miR-222
hsa-miR-23a
hsa-miR-23b
hsa-miR-24
hsa-miR-25

hsa-miR-26a
hsa-miR-27a
hsa-miR-27b
hsa-miR-29a
hsa-miR-29b
hsa-miR-29c
hsa-miR-30a
hsa-miR-30b
hsa-miR-30c
hsa-miR-30d
hsa-miR-30e
hsa-miR-30e*
hsa-miR-320

hsa-miR-331-3p
hsa-miR-365
hsa-miR-424
hsa-miR-455-3p
hsa-miR-574-3p
hsa-miR-9
hsa-miR-92a
hsa-miR-93
hsa-miR-99a
hsa-miR-99b
Up-regulated miRs
ebv-miR-BART15
hsa-miR-548d-5p

A total of 62 down-regulated and 2 up-regulated miRs with significant FDR corrected p-value and > 2x fold change.
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Table 2 Edge vs. core cell summary statistics for
significant miRs

Frequency  Expression
A. Edge Cells n % Mean SD
Down-Regulated 1 2% —-003 NA
Up-Regulated 63 98% 185 161
Total miRs 64 100% 182 161
B. Core Cells
Down-Regulated 2 3% -025 004
Up-Regulated 62 97% 400 191
Total miRs 64 100% 386 193

C. Differential Expression (Edge - Core)

Down-Regulated 62 97% —-214 054
Up-Regulated 2 3% 102 018
Total miRs 64 100% —204 068

Significant miRs identified at a=0.05, and utilizing a Benjamini-Hochberg false
discovery rate correction.
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After analysis, the user is presented with a visualization
of any pathways that contained at least one gene. The
pathways are ranked according to an enrichment signifi-
cance score based on a Fisher’s combined probability
(meta-analysis) test [13]. DIANA-mirPath also provides
a union of pathways feature. Using this technique we
were able to identify all significantly targeted pathways
by the selected miRs. As above, the Fisher’s meta-
analysis method was used to calculate p-values to illus-
trate the probability that the examined pathway is sig-
nificantly enriched with gene targets of at least one
selected miR [13]. For our list of 64 miRs, 18 enrichment
pathways are highly significant (p < 1E-16). The glioma
pathway is ranked as the 7™ most significant (p < 1E-16),
and 11 of the 18 highest ranked pathways are cancer-
related, such as endometrial cancer, colorectal cancer,
prostate cancer, and bladder cancer. In order to examine
the specificity of this approach we conducted the identi-
cal union of pathways analysis with a set of 64 randomly
selected miRs. For this list of randomly selected miRs,
the glioma pathway is not significant (p = 0.08). A total
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of 53 unique genes were identified as potential targets
by the three prediction algorithms for glioma pathways
(Table 3).

Despite the high rank of the glioma pathway reported
by mirPath, we sought a more detailed view of the miR-
gene interactions. We postulated that some genes might
be preferentially targeted by multiple miRs in our dataset.
Other studies employing miR pathway analysis favor com-
paring the results of multiple prediction algorithms to find
consensus interactions [12]. Taking a similar approach, we
recorded every potential miR-gene interaction among the
glioma pathway for all three of the prediction algorithms
(Figure 3). We summarized the findings with prediction
consensus counts (from consensus of 0 algorithms to
consensus of 3 algorithms) to identify the number of
algorithms that predicted each miR-gene interaction. We

Table 3 Frequency that a gene is predicted by a miR by
number of algorithms

Number of Number of
Algorithms Algorithms
Gene 3 2 1 Gene 3 2 1
CCND1 16 4 4 IGF1R 0 22 3
E2F3 12 " 1 SOS1 0 16 10
AKT3 1 9 6 PIK3R1 0 16 2
PDGFRA 11 4 1 IGF1 0 15 14
PDGFB 11 0 1 E2F2 0 Inl 8
RB1 10 2 3 PTEN 0 10 14
KRAS 9 3 0 PTENP1 0 10 14
PDGFRB 7 3 0 MAPK1 0 8 5
CDK6 6 8 5 TP53 0 2
CALM1 6 1 12 PIK3CD 0 5 2
CDKN1A 5 8 3 TGFA 0 3 1
PIK3R3 5 6 6 SHC4 0 3 0
CALM2 5 4 3 PDGFA 0 2 4
CAMK2D 5 4 2 PIK3CA 0 1 3
RAF1 5 3 0 SHC2 0 1 0
CALM3 5 2 2 AKT2 0 0 9
CAMK2G 5 1 5 CAMK2B 0 0 4
E2F1 4 1 0 PRKCB1 0 0 4
CSDE1 3 4 14 MAPK3 0 0 3
MAP2K1 3 4 1 EGF 0 0 2
PLCG1 3 3 1 EGFR 0 0 2
PIK3R2 3 2 3 PRKCG 0 0 2
FRAP1 3 0 1 BRAF 0 0 1
GRB2 2 0 1 CDK4 0 0 1
PRKCA 1 1 3 CDKN2A 0 0 1
SHC1 1 0 1 MAPK 0 0 1
SOS2 0 0 1
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preferentially focused our attention on interactions unani-
mously predicted by all three algorithms (score = 3). We
then summed the number of unanimous interactions
for each gene to assess the enrichment of single genes
(Figure 4). This count provided an empirical indication
that some genes are potentially targeted by many of the
top miRs identified in our analysis. All 3 algorithms
predict a glioma pathway gene target by 41 of the 62
down-regulated miRs in our study (Table 4).

Discussion

Increased miR expression results in decreased messenger
RNA (mRNA) expression, which in turn leads to decreased
protein expression. Conversely, decreased miR expression
could result in increased target mRNA expression, which
in turn could lead to increased target protein expression.
In the current study, we report the identification of a
set of 62 miRs that exhibit statistically significant nega-
tive (down-regulated) differential expression in the mi-
gratory (edge) cell population relative to the corresponding
expression in the matched migration-restricted (core) cell
population. Bioinformatics analysis of potential targets of
these down-regulated miRs produced a set of genes linked
to regulation of apoptosis. Genes targeted by the down-
regulated miR set have potential for increased expression
in the invasive cell population and therefore represent
potential therapeutic targets to limit glioma progression.

To begin our investigation of our miRs, we conducted
an extensive literature review of verified gene targets
relevant to cancer. The let-7 family of miRs is well rep-
resented in our results. Let-7 was one of the first two
miRs identified and was shown to be a critical regulator
of developmental timing [14]. The sequence of let-7 was
later discovered in the fruit fly and human genomes via
BLAST search and became the first recognized miR in
humans [15]. Interestingly, humans have 10 mature let-7
isoforms that are produced from 13 distinct precursor se-
quences located at different locations in the genome [16].
Eight let-7 family members were present in the set of
62 significant down-regulated miRs in the migratory
cell invasive population.

Let-7 members are widely considered critical tumor
suppressors that, when lost, can alter cell growth and
cancer progression [17]. In glioblastoma, transfection of
let-7 g into U251 and U87 glioblastoma cells reduced the
expression of Ras family proteins modulating proliferation
and invasiveness [18]. Notably, increased expression of
let-7 inhibited in vitro proliferation and reduced tumor
size in murine xenografts. Other studies have validated
Ras as a target for let-7 family members [19]. In addition
to let-7, our analysis also indicated that Ras proteins are
potential targets for other miRs in our study: miR-16,
mir-27b, miR-30c and miR-15b (Figure 3). It is well appre-
ciated that Ras is an integral signaling constituent of many
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growth factor receptor pathways and that alterations in
several growth factor receptor pathways, including EGFR
and PDGEFR, are a dominant characteristic of glioblast-
oma. As Ras signaling has been demonstrated to modulate
glioblastoma cell proliferation [20], the loss of these four
miRs, along with let-7, are likely to lead to altered Ras
expression and activity. Target analysis also revealed that
PDGEFB is potentially targeted by many miRs in the study
that together with PDGFR amplification provides a mech-
anism to potentiate tumor growth [21].

Two of the miRs in our study have been directly tied
to neurological malignancies. Let-7e has been shown to
inhibit neuroblastoma proliferation by targeting the MYC
oncogene [22]. Meanwhile, miR-181b has been strongly
implicated as a tumor suppressor in glioblastoma. Sub-
stantial down-regulation of miR-181a and miR-181b has
been observed in both human glioma samples and in

established glioma cell lines [23]. Expression of miR-181
was abundant in normal brain tissue, but dropped sub-
stantially with increasing WHO grades [23]. Notably, trans-
fection of miR-181b into glioblastoma cells significantly
inhibited cell invasion in an in vitro matrigel invasion assay
and increased apoptosis in the transfected cells [23].

Several miRs in our list appear to directly target apop-
tosis related genes. The anti-apoptotic protein BCL2 is
a validated target of miR-181b [24] and miR-16 [25].
Furthermore, BCL-XL is degraded by let-7c [20]. Ele-
vated levels of these proteins desensitize cells to apop-
tosis, and thus it is likely that loss of these relevant miRs
in migratory edge cells may cause increased expression
of genes and lead to inhibition of apoptosis.

From the pathway enrichment analysis, we find that
cyclin D1 (CCND1) stands out as a prominent target of
a number of the miRs identified in this study (Figures 2,
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Figure 4 Concurrences between glioma pathway gene target prediction algorithms. lllustration of the 53 genes and 60 miRs identified.
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3 and 4). Overexpression of the cyclin D1 protein is as-
sociated with tumorigenesis and is associated with poor
outcome in a variety of cancers [26]. Cyclin D1 is a crit-
ical gene involved in the cell cycle control pathway. It is
a regulatory subunit for the CDK4 and CDK6 proteins,
and these kinases form active complexes that are required
for a cell to progress from G1 to S phase. Cyclin D1 also
binds to the retinoblastoma protein (RB1). RBI is itself
highly targeted by many of the miRs in our analysis
(Figures 2, 3 and 4). The RB1 protein, on the other hand,
opposes G1/S checkpoint transitions. It is thus interesting
that both of these proteins are predicted targets by the
same miRs in the identified set. This suggests a tightly
controlled feedback loop that precisely regulates the
balance between either cell cycle progression, or arrest,
at G1. Perturbations of this balance lead to alterations
in cell proliferation.

Mutations or aberrant expression of proteins in the cell
cycle pathway have been associated with many cancers. In

glioblastoma cell lines, it has been reported that cyclin
D1 overexpression promotes invasiveness in vitro [27].
Furthermore, silencing cyclin D1 expression with siRNA
inhibited invasion and apoptosis. In vivo, abnormalities in
the cell cycle pathway are well recognized. In primary GB,
the function of the tumor suppressor proteins p16-INK4A
and pl4-ARF is affected, whereas in secondary GB it is
observed that CDK4 is amplified or RBI is lost [27]. We
speculate that loss of miRs targeting these proteins may
lead to an overexpression of cyclin D1, which can de-
regulate the cell cycle in concordance with these other
pathway abnormalities observed in vivo. Notably, our
analysis identified a number of miRs that have been
previously validated as targeting cyclin D1 including
let7a-7f [28] as well as mirl5 and miR16 [29]. If many
of the other target predictions are valid, then we postu-
late these miRs may form an integral network involved
in regulation of the cell cycle. Because cyclin D1 and
RB1 are co-predicted by many of the same set of miRs,
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Table 4 Frequency that a miR predicts a gene by number
of algorithms

Number of Number of

Algorithms Algorithms
miR 3 2 1 miR 3 2 1
hsa-miR-29a 8 4 2 hsa-miR-107 1 6 7
hsa-miR-29b 8 4 2 hsa-miR-130a 1 6 7
hsa-miR-29c 8 4 2 hsa-miR-23a 1 4 4
hsa-miR-93 7 6 3 hsa-miR-23b 1 4 4
hsa-miR-20b 7 6 1 hsa-let-7d 1 3 9
hsa-miR-20a 7 5 2 hsa-miR-25 1 3 6
hsa-miR-27a 7 3 3 hsa-miR-24 1 2 3
hsa-miR-27b 7 2 4 hsa-miR-99b 1 2 0
hsa-miR-106b 6 4 4 hsa-miR-125b 1 1 1
hsa-miR-15a 6 3 3 hsa-miR-99a 1 1 0
hsa-miR-30c 6 3 1 hsa-miR-100 1 1 0
hsa-miR-30d 6 3 1 hsa-miR-17 0 1" 2
hsa-miR-15b 6 2 4 hsa-miR-320 0 10 8
hsa-miR-16 6 2 4 hsa-miR-424 0 9 10
hsa-miR-30b 6 2 2 hsa-miR-30a 0 9 1
hsa-miR-181a 4 4 3 hsa-miR-30e 0 9 1
hsa-miR-181b 4 3 4 hsa-miR-221 0 4 5
hsa-miR-9 4 2 2 hsa-miR-222 0 4 5
hsa-miR-22 3 6 3 hsa-miR-10b 0 4 2
hsa-let-7i 3 5 3 hsa-miR-92a 0 3 5
hsa-let-7b 3 5 2 hsa-miR-365 0 2 6
hsa-let-7 g 3 5 2 hsa-miR-140-5p 0 2 2
hsa-let-7a 3 4 4 hsa-miR-21 0 2 1
hsa-let-7c 3 4 3 hsa-miR-197 0 1 3
hsa-let-7e 3 3 5 hsa-miR-455-3p 0 1 2
hsa-let-7f 3 4 4 hsa-miR-125a-5p 0 1 2
hsa-miR-19a 3 2 6 hsa-miR-151-3p 0 1 1
hsa-miR-19b 3 2 6 hsa-miR-331-3p 0 0 1
hsa-miR-26a 2 5 2 hsa-miR-574-3p 0 0 0
hsa-miR-103 1 6 7 hsa-miR-151-5p 0 0 0

they may be appropriate targets for validation (Figures 2,
3 and 4).

Also among the miRNAs that was significantly down-
regulated in the invasive cell population was miR-23b.
A previous report demonstrated that miR-23b targets a
set of genes associated with tumor invasion and metas-
tasis [30] implicating its loss in facilitating tumor pro-
gression. Similarly, a recent report has demonstrated
that miR-23b directly targets PIK3R3 [31] substantiating
its identification and predicted targeting of PIK3R3 in
the current analysis.
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Conclusions

Much progress in the understanding of miRs has been
made over the past decade and research is identifying
important functions for miRs in cancers such as glio-
blastoma. It is recognized that alterations in expression
of miRNAs can significantly alter the proliferation and
invasiveness of cells. Indeed, an increasing number of
miRs have been validated as components of cancer-
driving pathways. In this study we have applied a set of
statistical and informatics tools and approaches, such as
t-test, FDR, volcano plot, consensus miR target predic-
tion and pathway analysis, to explore the role of miRs in
glioblastoma. Approaches similar to the ones described
here, that combine bioinformatics analysis of experimen-
tally generated data with in silico miR target prediction
and pathway enrichment analysis can be applied to other
diseases to provide biomedical researchers and clinicians
with increased opportunities for therapeutic interventions.

Methods

Data collection

RNA extraction and miR microarray profiling from
matched sets of migratory (edge) and migration-restricted
(core) cell populations of seven different glioblastoma cell
lines has been described in detail [32]. The data were
normalized to eliminate or reduce the potential for fluor-
escent intensity level bias. Control data was identified and
removed before final analysis. The resulting cleaned data-
set used in this study comprised 805 human miRs.

Data analysis

A two-tailed t-test statistic (o = 0.05) and corresponding
p-value was calculated for all miRs. SAS 9.2 was used for
all statistical analysis. Statistical output for each analyzed
miR included tests for normalcy to ensure appropriate-
ness of analytical techniques. False discovery rate (FDR)
correction was calculated using a Benjamini-Hochberg
correction. A fold change method was used to identify
differentially expressed miRs. This method evaluates the
log ratio between two conditions; in this case the Log,
normalized expression levels of edge cell populations
(migration cells) compared to core cell populations
(migration-restricted cells). A twofold difference was
used to identify meaningful differentially expressed miRs.
In the transformed log scale, a twofold change corre-
sponds to a 1.0 gene signal expression change. As this is
not a true statistical test, no confidence levels can be at-
tributed to the differentially expressed or non-differentially
expressed miRs.

After calculation of p-values, FDR corrections, and log
values, the data were further analyzed to identify miRs
that exhibited both a significant corrected p-value and a
greater than twofold change in expression level in the
migratory edge cells relative to the migration restricted



Bradley et al. BMC Bioinformatics 2014, 15:21
http://www.biomedcentral.com/1471-2105/15/21

core cells. A total of 64 miRs satisfy the criteria of sig-
nificant corrected p-value and > twofold change in ex-
pression level. This subset of the data (64 miRs) represents
the specific miRs identified for further study. Descriptive
statistics were calculated for each of these 64 miR core
and edge cell sample expression levels. Each miR was
then assessed for dysregulation as either up-regulated
(positive expression level) or down-regulated (negative
expression level).

A volcano scatter plot method was used to graphically
illustrate the relationship between significance levels for
differentially expressed miRs. Negative Log;q p-values
for each of the 805 miRs were plotted on the y-axis and
Log, normalized fold change expression levels on the x-
axis. The threshold Benjamini-Hochberg corrected -Log;
p-value (1.687) was superimposed on the volcano plot for
reference (horizontal dashed line) to identify miRs with
significant differential expression (o = 0.05). In the result-
ing plot, miRs with a -Log;o p-value of greater than the
threshold corrected -Log;q p-value (1.687), and a fold
change of greater than twofold, comprise the 64 miRs
identified for further study.

Target prediction and pathway enrichment analysis

We employed the DIANA-mirPath website [13] for target
prediction and pathway enrichment analysis for the 62
down-regulated miRs identified in the study. As the focus
of the study is in migratory glioblastoma cells, we concen-
trated the majority of our effort on the down-regulated
miRs (62) and included the up-regulated miRs (2) only as
overall statistical measures in the analysis. We used three
gene target prediction algorithms in mirPath: TargetScan
v5, PicTar 4-way, and DIANA MicroT v4 to analyze the
datasets as separate jobs. The mirPath tool includes a
pathways union feature (A Posteriori), which we used to
identify all significantly targeted pathways by the selected
miR. The mirPath server performs the enrichment ana-
lysis and calculates the significance levels (p-values) for
each selected miR. The tool then calculates a merged p-
value for each pathway based on a Fisher’s combined
probability test statistic (X?). The results from this meta-
analysis method depict the probability that the examined
pathway is significantly enriched with gene targets of at
least one selected miR. We conducted this analysis for
both our identified list of 64 miRs, as well as for a list of
64 randomly selected miRs in order to assess the specifi-
city of our results.

Availability of supporting data
Supporting data will be made available upon request.
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