231 research outputs found

    Validity of the Walter Reed Visual Assessment Scale to measure subjective perception of spine deformity in patients with idiopathic scoliosis

    Get PDF
    BACKGROUND: The Walter Reed Visual Assessment Scale (WRVAS) was designed to allow idiopathic scoliosis patients to describe their perception of their deformity. In a previous stduy, the scale has shown good correlation with magnitude of the curve METHODS: The study included 70 patients (60 women and 10 men), mean age 19.4 years (range 12–40), with idiopathic scoliosis. Each patient filled out the WRVAS and the SRS-22 questionnaire. Thoracic and lumbar curve angles were determined in standing X-rays and the largest was named Cobbmax. WRVAS internal consistency was assessed with Cronbach's alpha. Correlation coefficients were calculated between Cobbmax and the various WRVAS questions, and Cobbmax and the SRS-22 scales. The correlation between the WRVAS and SRS-22 was also determined RESULTS: Mean magnitudes were thoracic curve, 36.6° and lumbar curve, 33.2°; average Cobbmax was 37.9°. The mean total WRVAS score was 15.6. Mean scores for the various SRS-22 scales were function 4.6, pain 4.3, self-image 3.7, mental health 4.2, and total score 84.1. Internal consistency for the WRVAS was excellent (Cronbach's alpha, 0.9), and there were no signs of collinearity among the seven questions (tolerance range 0.2–0.5). All the items on the WRVAS correlated significantly with Cobbmax (correlation coefficients, 0.4 to 0.7). The correlation between the total WRVAS and total SRS-22 score was -0.54 (P = .0001) and between WRVAS total score and SRS-22 image domain score was -0.57 (p = 0.0001) CONCLUSION: The WRVAS showed excellent internal consistency and absence of collinearity. There was a highly significant correlation between the results of the test and the magnitude of the deformity. The WRVAS correlated significantly with the SRS-22 image scale. The WRVAS is a valid instrument to assess scoliosis patients perception of their deformit

    Health related quality of life in adolescents with idiopathic scoliosis: a cross-cultural comparison between two methods of treatment

    Get PDF
    he present study aims at evaluating the effects produced on HRQOL by two different methods of physiotherapy in adolescent population with Idiopathic Scoliosis (IS): SEAS, used in Milan (Italia) in ISICO center, and Barcelona Scoliosis Physical Therapy School, in E. SalvĂĄ Institut (Spain)

    Ductility of wide-beam RC frames as lateral resisting system

    Get PDF
    [EN] Some Mediterranean seismic codes consider wide-beam reinforced concrete moment resisting frames (WBF) as horizontal load carrying systems that cannot guarantee high ductility performances. Conversely, Eurocode 8 allows High Ductility Class (DCH) design for such structural systems. Code prescriptions related to WBF are systematically investigated. In particular, lesson learnt for previous earthquakes, historical reasons, and experimental and numerical studies underpinning specific prescriptions on wide beams in worldwide seismic codes are discussed. Local and global ductility of WBF are then analytically investigated through (1) a parametric study on chord rotations of wide beams with respect to that of deep beams, and (2) a spectral-based comparison of WBF with conventional reinforced concrete moment resisting frames (i.e. with deep beams). Results show that the set of prescriptions given by modern seismic codes provides sufficient ductility to WBF designed in DCH. In fact, global capacity of WBF relies more on the lateral stiffness of the frames and on the overstrength of columns rather than on the local ductility of wide beams, which is systematically lower with respect to that of deep beams.GĂłmez-MartĂ­nez, F.; Alonso DurĂĄ, A.; De Luca, F.; Verderame, GM. (2016). Ductility of wide-beam RC frames as lateral resisting system. Bulletin of Earthquake Engineering. 14(6):1545-1569. doi:10.1007/s10518-016-9891-xS15451569146ACI (1989) Building code requirements for reinforced concrete (ACI 318-89). ACI Committee 318, American Concrete Institute, Farmington Hills, Michigan, USAACI (2008) Building code requirements for structural concrete (ACI 318-08) and commentary (318-08). ACI Committee 318, American Concrete Institute, Farmington Hills, Michigan, USAACI-ASCE (1991) Recommendations for design of beam-column connections in monolithic reinforced concrete structures (ACI 352R-91). Joint ACI-ASCE Committee 352, American Concrete Institute, Farmington Hills, Michigan, USAACI-ASCE (2002) Recommendations for design of beam-column connections in monolithic reinforced concrete structures (ACI 352R-02). Joint ACI-ASCE Committee 352, American Concrete Institute, Farmington Hills, Michigan, USAArslan MH, Korkmaz HH (2007) What is to be learned from damage and failure of reinforced concrete structures during recent earthquakes in Turkey? Eng Fail Anal 14(1):1–22ASCE (2007) Seismic Rehabilitation of Existing Buildings, ASCE/SEI 41-06. American Society of Civil Engineers, RestonASCE (2010) Minimum Design Loads for Building and Other Structures, ASCE/SEI 7-10. American Society of Civil Engineers, RestonBenavent-Climent A (2007) Seismic behavior of RC side beam-column connections under dynamic loading. J Earthquake Eng 11:493–511Benavent-Climent A, Zahran R (2010) An energy-based procedure for the assessment of seismic capacity of existing frames: application to RC wide beam systems in Spain. Soil Dyn Earthq Eng 30:354–367Benavent-Climent A, CahĂ­s X, Zahran R (2009) Exterior wide beam-column connections in existing RC frames subjected to lateral earthquake loads. Eng Struct 31:1414–1424Benavent-Climent A, CahĂ­s X, Vico JM (2010) Interior wide beam-column connections in existing RC frames subjected to lateral earthquake loading. Bull Earthq Eng 8:401–420BHRC (2004) Iranian Code of Practice for Seismic Resistant Design of Buildings. Standard NÂș 2800, 3rd edn. Building and Housing Research Center, TehranBorzi B, Elnashai AS (2000) Refined force reduction factors for seismic design. Eng Struct 22:1244–1260Borzi B, Pinho R, Crowley H (2008) Simplified pushover-based vulnerability analysis for large-scale assessment of RC buildings. Eng Struct 30:804–820BSI (2004) Eurocode 2: Design of concrete structures: Part 1-1: General rules and rules for buildings. British Standards Institutions, LondonCalvi GM (1999) A displacement-based approach for vulnerability evaluation of classes of buildings. J Earthquake Eng 3(3):411–438CDSC (1994) Seismic construction code, NCSR-94. Committee for the Development of Seismic Codes, Spanish Ministry of Construction, Madrid, Spain (in Spanish)CDSC (2002) Seismic construction code, NCSE-02. Committee for the Development of Seismic Codes, Spanish Ministry of Construction, Madrid, Spain (in Spanish)CEN (2004) Eurocode 8: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Standard EN 1998-1:2003—ComitĂ© EuropĂ©en de Normalisation, Brussels, BelgiumCEN (2005) Eurocode 8: design of structures for earthquake resistance—part 3: assessment and retrofitting of buildings. European Standard EN 1998-1:2005—ComitĂ© EuropĂ©en de Normalisation, Brussels, BelgiumCheung PC, Paulay T, Park R (1991) Mechanisms of slab contributions in beam-column subassemblages. ACI Spec Publ 123Cosenza E, Manfredi G, Polese M, Verderame GM (2005) A multilevel approach to the capacity assessment of existing RC buildings. J Earthquake Eng 9(1):1–22Crowley H, Pinho R (2010) Revisiting Eurocode 8 formulae for periods of vibration and their employment in linear seismic analysis. Earthquake Eng Struct Dynam 39:223–235CS.LL.PP (2009) Instructions for the application of the technique code for the Constructions. Official Gazette of the Italian Republic, 47, Regular Supplement no. 27 (in Italian)De Luca F, Vamvatsikos D, Iervolino I (2013) Near-optimal piecewise linear fits of static pushover capacity curves for equivalent SDOF analysis. Earthquake Eng Struct Dynam 42(4):523–543De Luca F, Verderame GM, GĂłmez-MartĂ­nez F, PĂ©rez-GarcĂ­a A (2014) The structural role played by masonry infills on RC building performances after the 2011 Lorca, Spain, earthquake. Bull Earthq Eng 12(5):1999–2026Decanini LD, Mollaioli F (2000) Analisi di vulnerabilitĂ  sismica di edifici in cemento armato pre-normativa. In: Cosenza E (ed) Comportamento sismico di edifici in cemento armato progettati per carichi verticali. CNR—Gruppo Nazionale per la Difesa dei Terremoti, Rome (in Italian)DolĆĄek M, Fajfar P (2004) IN2—a simple alternative for IDA. In: Proceedings of the 13th World conference on Earthquake Engineering. August 1–6, Vancouver, Canada. Paper 3353DomĂ­nguez D, LĂłpez-Almansa F, Benavent-Climent A (2014) Comportamiento para el terremoto de Lorca de 11-05-2011, de edificios de vigas planas proyectados sin tener en cuenta la acciĂłn sĂ­smica. Informes de la ConstrucciĂłn 66(533):e008 (in Spanish)DomĂ­nguez D, LĂłpez-Almansa F, Benavent-Climent A (2016) Would RC wide-beam buildings in Spain have survived Lorca earthquake (11-05-2011)? Eng Struct 108:134–154Dönmez C (2013) Seismic Performance of Wide-Beam Infill-Joist Block RC Frames in Turkey. J Perform Constr Facil 29(1):04014026Fadwa I, Ali TA, Nazih E, Sara M (2014) Reinforced concrete wide and conventional beam-column connections subjected to lateral load. Eng Struct 76:34–48Fardis MN (2009) Seismic design, assessment and retrofitting of concrete, Buildings edn. Springer, LondonGentry TR, Wight JK (1992) Reinforced concrete wide beam-column connections under earthquake-type loading. Report no. UMCEE 92-12. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USAGĂłmez-MartĂ­nez F (2015) FAST simplified vulnerability approach for seismic assessment of infilled RC MRF buildings and its application to the 2011 Lorca (Spain) earthquake. Ph.D. Thesis, Polytechnic University of Valencia, SpainGĂłmez-MartĂ­nez F, PĂ©rez GarcĂ­a A, De Luca F, Verderame GM (2015a) Comportamiento de los edificios de HA con tabiquerĂ­a durante el sismo de Lorca de 2011: aplicaciĂłn del mĂ©todo FAST. Informes de la ConstrucciĂłn 67(537):e065 (in Spanish)GĂłmez-MartĂ­nez F, PĂ©rez-GarcĂ­a A, Alonso DurĂĄ A, MartĂ­nez Boquera A, Verderame GM (2015b) Eficacia de la norma NCSE-02 a la luz de los daños e intervenciones tras el sismo de Lorca de 2011. In: Proceedings of Congreso Internacional sobre IntervenciĂłn en Obras ArquitectĂłnicas tras Sismo: L’Aquila (2009), Lorca (2011) y Emilia Romagna (2012), May 13–14, Murcia, Spain (in Spanish)GĂłmez-MartĂ­nez F, Verderame GM, De Luca F, PĂ©rez-GarcĂ­a A, Alonso-DurĂĄ, A (2015c). High ductility seismic performances of wide-beam RC frames. In; XVI Convegno ANIDIS. September 13–17, L'Aquila, ItalyHawkins NM, Mitchell D (1979) Progressive collapse of flat plate structures. ACI J 76(7):775–808Iervolino I, Manfredi G, Polese M, Verderame GM, Fabbrocino G (2007) Seismic risk of RC building classes. Eng Struct 29(5):813–820Inel M, Ozmen HB, Akyol E (2013) Observations on the building damages after 19 May 2011 Simav (Turkey) earthquake. Bull Earthq Eng 11(1):255–283Kurose Y, Guimaraes GN, Zuhua L, Kreger ME, Jirsa JO (1991) Evaluation of slab-beam-column connections subjected to bidirectional loading. ACI Spec Publ 123:39–67LaFave JM, Wight JK (1997) Behavior of reinforced exterior wide beam-column-slab connections subjected to lateral earthquake loading. Report no. UMCEE 97-01. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USALaFave JM, Wight JK (1999) Reinforced concrete exterior wide beam-column-slab connections subjected to lateral earthquake loading. ACI Struct J 96(4):577–586LaFave JM, Wight JK (2001) Reinforced concrete wide-beam construction vs. conventional construction: resistance to lateral earthquake loads. Earthq Spectra 17(3):479–505Li B, Kulkarni SA (2010) Seismic behavior of reinforced concrete exterior wide beam-column joints. J Struct Eng (ASCE) 136(1):26–36LĂłpez-Almansa F, DomĂ­nguez D, Benavent-Climent A (2013) Vulnerability analysis of RC buildings with wide beams located in moderate seismicity regions. Eng Struct 46:687–702Masi A, Santarsiero G, Nigro D (2013a) Cyclic tests on external RC beam-column joints: role of seismic design level and axial load value on the ultimate capacity. J Earthquake Eng 17(1):110–136Masi A, Santarsiero G, Mossucca A, Nigro D (2013b) Seismic behaviour of RC beam-column subassemblages with flat beam. In: Proceedings of XV Convegno della Associazione Nazionale Italiana di Ingegneria Sismica, ANIDIS. Padova, ItalyMazzolani FM, Piluso V (1997) Plastic design of seismic resistant steel frames. Earthquake Eng Struct Dynam 26:167–191MEPP (2000a) Greek earthquake resistant design code, EAK 2000. Ministry of Environment, Planning and Public Works, AthensMEPP (2000b) Greek code for the design and construction of concrete works, EKOS 2000. Ministry of Environment, Planning and Public Works, Athens (in Greek)Miranda E, Bertero VV (1994) Evaluation of strength reduction factors for earthquake-resistant design. Earthq Spectra 10(2):357–379MPWS (2007) Specifications for buildings to be built in seismic areas. Turkish Standards Institution, Ministry of Public Works and Settlement, Ankara (in Turkish)Mwafy AM, Elnashai AS (2002) Calibration of force reduction factors of RC buildings. J Earthquake Eng 6(2):239–273NZS (2004) Structural design actions. Part 5: earthquake actions, NZS 1170.5. New Zealand Standards, WellingtonNZS (2006) Concrete structures standard: part 1—the design of concrete structures, NZS 3101 part 1. New Zealand Standards, WellingtonPan A, Moehle JP (1989) Lateral displacement ductility of reinforced concrete flat plates. ACI Struct J 86(3):250–258Panagiotakos TB, Fardis MN (2001) Deformations of reinforced concrete members at yielding and ultimate. ACI Struct J 98(2):135–148 [and Appendix 1 (69 pp)]Paulay T, Priestley MJN (1992) Seismic design of concrete and masonry structures. Wiley, New York, USAQuintero-Febres CG, Wight JK (1997) Investigation on the seismic behavior of RC interior wide beam-column connections. Report no. UMCEE 97-15. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USAQuintero-Febres CG, Wight JK (2001) Experimental study of Reinforced concrete interior wide beam-column connections subjected to lateral loading. ACI Struct J 98(4):572–582Serna-Ros P, FernĂĄndez-Prada MA, Miguel-Sosa P, Debb OAR (2001) Influence of stirrup distribution and support width on the shear strength of reinforced concrete wide beams. Mag Concr Res 54(00):1–11Shuraim AB (2012) Transverse stirrup configurations in RC wide shallow beams supported on narrow columns. J Struct Eng 138(3):416–424Siah WL, Stehle JS, Mendis P, Goldsworthy H (2003) Interior wide beam connections subjected to lateral earthquake loading. Eng Struct 25:281–291Tore E, Demiral T (2014) A parametric study of code-based performance limits for wide beams. e-GFOS 5(8):1–11Vamvatsikos D, Cornell CA (2002) Incremental Dynamic Analysis. Earthquake Eng Struct Dynam 31:491–514Vidic T, Fajfar P, Fischinger M (1994) Consistent inelastic design spectra: strength and displacement. Earthquake Eng Struct Dynam 23:507–521Vielma JC, Barbat AH, Oller S (2010) Seismic safety of low ductility structures used in Spain. Bull Earthq Eng 8:135–15

    The role of maternal age, growth and environment in shaping offspring performance in an aerial conifer seed bank

    Get PDF
    This is the author accepted manuscript. The final version is available from the Botanical Society of America via the DOI in this recordData Availability: The R code (doi: 10.6084/m9.figshare.17158469) and primary data (doi: 10.6084/m9.figshare.15097185) are available in Figshare.PREMISE Maternal effects have been demonstrated to affect offspring performance in many organisms and, in plants, seeds are important mediators of these effects. Some woody plant species maintain long-lasting canopy seed banks as an adaptation to wildfires. Importantly, these seeds stored in serotinous cones are produced by the mother plant under varying ontogenetic and physiological conditions. METHODS We sampled the canopy seed bank of a highly serotinous Pinus pinaster population to test if maternal age and growth, as well as the environmental conditions during each crop year, affected seed mass and ultimately germination and early survival. After determining retrospectively the year of each seed cohort, we followed germination and early survival in a semi-natural common garden. KEY RESULTS We found that seed mass was related to maternal age and growth at the time of seed production, i.e. slow growth-older mothers had smaller seeds and fast growth-young mothers had bigger seeds, which could be interpreted either as a proxy of senescence or as a maternal strategy. We also confirmed that seed mass had a positive effect on germination success, but beyond differences in seed mass, maternal age had a negative effect and diameter had a positive effect on germination timing and subsequent survival. CONCLUSIONS Thereby we highlight the importance of maternal conditions combined with seed mass in shaping seedling establishment. Our findings open new insights in the offspring performance deriving from long-term canopy seed banks, which may have high relevance for plant adaptation.Spanish Government, Ministry of Science, Innovation and Universities (MICIU

    The relationship between quality of life and compliance to a brace protocol in adolescents with idiopathic scoliosis: a comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Corrective bracing for adolescent idiopathic scoliosis (AIS) has favourable outcomes when patients are compliant. However, bracing may be a stressful and traumatic experience and compliance with a bracing protocol is likely to be dependent upon patients' physical, emotional and social wellbeing. The Brace Questionnaire (BrQ), a recently-developed, condition-specific tool to measure quality of life (QOL) has enabled clinicians to study relationships between QOL and compliance.</p> <p>Methods</p> <p>The BrQ was administered to 31 AIS patients after a minimum of 1 year of wearing a brace. Subjects were 13–16 year old South African girls with Cobb angles of 25–40 degrees. Participants were divided into two groups according to their level of compliance with the bracing protocol. Brace Questionnaire sub- and total scores were compared between the two groups using the t-test for comparison of means.</p> <p>Results</p> <p>Twenty participants were classified as compliant and 11 as non-compliant. Mean total BrQ scores (expressed as a percentage) were 83.7 for the compliant group and 64.4 for the non-compliant group (p < 0.001), and on analysis of the 8 domains that make up the BrQ, the compliant group scored significantly higher in the 6 domains that measured vitality and social, emotional and physical functioning.</p> <p>Conclusion</p> <p>Poor compliance with a brace protocol is associated with poorer QOL, with non-compliant patients lacking vitality and functioning poorly physically, emotionally and socially. Quality of life for adolescents with idiopathic scoliosis may relate more to psychosocial coping mechanisms than to physical deformity and its consequences. It is important to establish whether remedial programmes are capable of addressing personal, group and family issues, improving QOL and promoting compliance.</p

    Social acceptability of treatments for adolescent idiopathic scoliosis: a cross-sectional study

    Get PDF
    BACKGROUND: There are no data on social acceptability of scoliosis. Aim. To elicit evidence-based opinions on therapeutic strategies for adolescent idiopathic scoliosis in a sample of families with not affected children, so to understand the social perception of this issue. METHODS: Design. Cross-sectional study. Setting. Secondary schools in 4 northern Italian regions. Participants. Parents of children in the age group at risk of and not affected by scoliosis (Pre-test group = 100, Study group = 3,162). Interventions. Questionnaire: five specific and evidence-based questions regarding scoliosis treatment options and a socio-demographic section. Methodology. "Role-playing" in which it was required to normal people to answer what they would have chosen if they had been in the situation proposed. Main outcome measures. Perception of acceptability of treatments for adolescent idiopathic scoliosis in the general population (social acceptability) RESULTS: The families support the use of screening (94.8%) at school, immediate bracing (76.4%) for scoliosis with a 60% risk of progression, but also therapeutic exercises (86.9%) in cases with a 25% risk of progression. CONCLUSION: There is a growing tendency to consider not only the efficacy, effectiveness and efficiency of treatments, but also their acceptability. This patient-centred aspect is especially more important in areas (like adolescent idiopathic scoliosis) in which there is some evidence on the efficacy of treatments, but not strong and definitive (RCTs). Adolescent idiopathic scoliosis treatments should thus be carefully considered also in the light of their social acceptability
    • 

    corecore