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Abstract 

PREMISE: Maternal effects have been demonstrated to affect offspring performance in 

many organisms and, in plants, seeds are important mediators of these effects. Some 

woody plant species maintain long-lasting canopy seed banks as an adaptation to wildfires. 

Importantly, these seeds stored in serotinous cones are produced by the mother plant under 

varying ontogenetic and physiological conditions.  

METHODS: We sampled the canopy seed bank of a highly serotinous Pinus pinaster 

population to test if maternal age and growth, as well as the environmental conditions 

during each crop year, affected seed mass and ultimately germination and early survival. 

After determining retrospectively the year of each seed cohort, we followed germination 

and early survival in a semi-natural common garden.  

KEY RESULTS: We found that seed mass was related to maternal age and growth at the 

time of seed production, i.e. slow growth-older mothers had smaller seeds and fast growth-

young mothers had bigger seeds, which could be interpreted either as a proxy of 

senescence or as a maternal strategy. We also confirmed that seed mass had a positive 

effect on germination success, but beyond differences in seed mass, maternal age had a 
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negative effect and diameter had a positive effect on germination timing and subsequent 

survival.  

CONCLUSIONS: Thereby we highlight the importance of maternal conditions combined 

with seed mass in shaping seedling establishment. Our findings open new insights in the 

offspring performance deriving from long-term canopy seed banks, which may have high 

relevance for plant adaptation.  

Keywords: Canopy seed bank, germination, maternal effects, Pinus pinaster, 

recruitment, seed mass, serotiny, survival, transgenerational plasticity. 

INTRODUCTION 

Traditionally, plant breeding strategies have focused on the genetic factors that 

influence phenotypes, overlooking the potential maternal effects and their adaptive 

significance (Russell and Lummaa, 2009; Vivas et al., 2020). However, given the 

substantial evolutionary and ecological implications that maternal effects can have, 

it is essential to investigate the performance of plant offspring derived from 

heterogeneous maternal conditions, in terms of age, growth and environment. To 

this end, aerial seed banks provide a privileged experimental system compared to 

standard germplasm banks (Levin, 1990; Barrett et al., 2005). 

The phenotypes of all living beings are determined by their genotype, their 

environment, and the interaction between the two, and there is a growing 

realisation that an important part of this environment may be provided by the 

mother during early life stages, such as the embryonic development stage 

(Mousseau and Fox, 1998; Diggle et al., 2010). As maternal effects have long been 

studied in a variety of taxa and contexts (Bernardo, 1996; Russell and Lummaa, 

2009, Pick et al., 2019), we can find different definitions in the literature (for a 

discussion of maternal effects in plants, see Roach and Wulff, 1987). Here we use 
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the common (quantitative genetic) definition of a maternal effect as the 

contribution of the maternal parent to the phenotype of its offspring beyond the 

equal chromosomal contribution expected from each parent (Roach and Wulff, 

1987; Kirkpatrick and Lande, 1989). In other words, maternal effects occur when 

the environment or physiological state of a mother changes the offspring phenotype 

without a corresponding change in the genotype (Bock et al., 2019). Importantly, 

this does not mean that maternal effects cannot have a genetic basis (Wolf and 

Wade, 2016).  

Transgenerational maternal effects provide a flexible mechanism by which 

sedentary or sessile organisms can cope with heterogeneous environments 

(Galloway, 2007). In plants, seed mass, which is determined by the seed coat, the 

megagametophyte and the embryo, may be an important mediator of maternal 

effects (Bischoff and Mueller-Schaerer, 2010). In flowering plants (angiosperms), 

both the embryo and the endosperm are derived from individual fertilization 

events, and only the seed coat that encloses these tissues is purely of maternal 

origin (Westoby and Rice, 1982; Baroux et al., 2002). By contrast, in 

gymnosperms only the diploid embryo contains genes of both parents, while all 

other tissues, including the conspicuous megagametophytic tissue surrounding the 

embryo, are maternal in origin (Linkies et al., 2010). Hence, in gymnosperms there 

is a potentially wider role for maternal effects mediated by seed provisioning, 

together with other aspects of the external and internal maternal environment 

(Herman and Sultan, 2011).  

Maternal effects that affect germination and early stages of plant development are 

among the best-documented examples (Donohue et al., 2005; Bischoff and 

Mueller-Schaerer, 2010; Cendán et al., 2013). Therefore, seed mass is a 
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cornerstone trait that links the evolutionary ecology of reproduction with seedling 

establishment and the ecology of vegetative growth (Shipley et al., 1990; Leishman 

et al., 2000). In conifers, the haploid megagametophyte is the main storage tissue 

providing reserves to the embryo for germination, before the needle-like cotyledons 

start photosynthesising (Burrows et al., 2017). So, it is not surprising that maternal 

effects related to seed mass and seedling performance (survival and growth) are 

particularly well-documented in conifers (Sorensen and Campbell, 1993; Zas and 

Sampedro, 2015).  

In addition to seed mass, maternal age has been shown to have a negative effect on 

offspring performance in other taxa (Lansing, 1954; Priest et al., 2002; Bock et al., 

2019). Many organisms exhibit age-related declines in offspring quality and, while 

the ultimate causes of such decline are still largely unknown, a decrease in parental 

care or provisioning due to maternal senescence is generally invoked to explain 

such trends (Barks and Laird, 2020), as well as the transmission of epigenetic 

factors from aging parents to their offspring (Schroeder et al., 2015).  

Long-lasting seed banks are particularly valuable when it comes to assessing the 

importance of maternal effects because they contain viable seeds that have been 

formed across a range of maternal developmental stages and environmental 

conditions (Lamont et al., 1991; Barrett et al., 2005). Unlike soil seed banks, aerial 

seed banks of woody plants consist of serotinous fruits or cones (i.e. that delay 

dehiscence after ripening) that can be individually dated retrospectively (Tapias et 

al., 2001, Martín Sanz et al., 2017). Moreover, fruits or cones formed early in the 

mother plant life coexist with those formed at more developed stages, and this 

ontogenetic gradient may interact with the environment under which each seed 

cohort was formed (Leslie and Losada, 2019). In addition to providing valuable 
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general insights, serotiny provides a valuable model for the study of the causes and 

consequences of maternal effects in general.  

Considering that seed mass-mediated maternal effects are costly in terms of 

resources (Martín Sanz et al., 2017), we expect seed mass to vary with respect to 

the maternal developmental stage and the environmental conditions at time of seed 

formation, and this variation to mediate variation in offspring performance (i.e. 

germination success, timing of germination and survival). Therefore, we 

hypothesized that (a) the aerial seed bank will show variation in seed mass between 

and within mother trees that depends on maternal age (i.e. older trees produce 

lighter seeds), growth and environmental conditions at the time of seed 

development (i.e. under favourable conditions trees produce heavier seeds), (b) that 

maternal age, growth and environmental conditions experienced at the time of seed 

development shape germination success and timing, as well as survival, and finally 

c) that these effects on offspring performance are at least partly mediated by 

variation in seed mass. To test these hypotheses, we sampled the canopy seed bank 

of a highly serotinous maritime pine (Pinus pinaster Aiton, Pinaceae) population, 

where more than 58% of serotinous trees can be found (Tapias et al., 2004; Calvo 

et al., 2016), ensuring a representative level of serotinous cone ages. Furthermore, 

retrospective cone dating in this species is easier in comparison with other 

serotinous pines in our area such as Pinus halepensis, which usually develop 

several consecutive growth units per year (high polycyclism) and false xylem 

growth rings (Buissart et al., 2015). We retrospectively determined each seed’s 

crop year, as well as the mother tree’s age, growth, and the abiotic environment at 

the time of seed formation, i.e. at each of those crop years. Subsequently, we 

followed germination and early survival in a semi-natural nursery common garden.  
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MATERIAL AND METHODS 

Study site and sampling regime. We collected serotinous cones in a natural 

population of Pinus pinaster located in Tabuyo del Monte (latitude 42°18′46″N, 

longitude 6°12′12″W) in northwestern Spain (Fig. 1), where serotiny is common 

(Tapias et al., 2001; Calvo et al., 2016). This pine forest is located at an altitude of 

900 m above sea level. In November 2017, we randomly sampled 20 trees that 

were at least twenty meters apart over an area of 55 ha with at least six age cohorts 

of serotinous cones per branch. Cones were collected from three branches per tree 

and stored at 4ºC during the lab processing.  

Cone and seed age characterisation. To infer the year in which a cone was 

produced in the field, we used the stem node counting method (Lamont, 1985. 

Appendix S1, see the Supplementary Data with this article). These estimates 

were followed-up by counting the number of rings in the branch at the insertion 

point in the laboratory (Tapias et al. 2001, Martín-Sanz et al., 2017). From the 

estimated cone crop year, we deduced the age of each cone and thereby of the 

seeds therein. For example, a cone produced in 2007 contained ten years old seeds 

in 2017. We discarded four trees due to indistinguishable and/or missing branch 

wood rings, therefore we kept sixteen mother trees for the next steps of the 

experiment. 

Mother tree characterization. We measured the basal diameter of all sampled 

trees, and we extracted two basal cores with a Pressler increment borer to 

determine tree age and measure annual radial growth in the laboratory (Stokes and 

Smiley 1968). Each core was mounted and cut with the help of a microtome until 

tree rings were clearly visible. Tree ring series were visually cross-dated to identify 

locally absent rings and to check for errors (Fritts, 1976). Crossdating was not 
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statistically verified because most trees were very young and individual time series 

were shorter than 25 years in several cases. Ring width was measured at 0.01 mm 

accuracy using the LINTAB system and TSAP-Win (Rinntech, Heidelberg, 

Germany). If cores failed to reach the centre (Norton et al., 1987) the number of 

missing rings was estimated by dividing the length of the missing radius by the 

mean growth rate of the rings adjacent to the largest visible arc on the core 

following Rozas (2003). To better compare the interannual variability in radial 

growth among different trees, raw ring-width measures were normalized, i.e. 

transformed to have a mean of 0 and a standard deviation of 1 before further 

statistical analysis. Based on the basal diameter as measured in the field and the 

ring-width data collected in the laboratory, we retrospectively inferred the age and 

diameter of each mother tree in the year a cone was produced. 

Climate data. To complement our temporal data on the environment provided by 

the mother over time, we used the Standardised Precipitation-Evapotranspiration 

Index (SPEI; https://spei.csic.es), a multiscalar drought index based on climatic 

data that can be compared with other SPEI values over time and space (Vicente-

Serrano et al., 2010). The SPEI database offers long-time robust information about 

drought conditions at the global scale across a range of timescales. We used the 

SPEI calculated for five months (SPEI5July) of each embryo development year. 

Positive values are associated with above-average wet conditions, and negative 

values with above-average dry conditions. Here we used SPEI data based on 

monthly precipitation and potential evapotranspiration as collected by the Climatic 

Research Unit of the University of East Anglia. 

Seed extraction and measurement. Cones were introduced in a chamber at 60ºC 

for 2.5 hours, after which they were opened manually to obtain all seeds. Further 
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heating could have negative effects on germination success (Escudero et al., 2002). 

We weighed the total seed mass from each cone, and after using a float test to 

remove empty seeds (Serrano Antolín and Calderón Guerrero, 2009) and to ensure 

the same conditions for all trees and cohorts, ten seeds per cone were selected at 

random and weighed individually. Note that various tests can be used to ensure that 

only viable seeds are planted (e.g. float test such as in our case or x-ray), but 

nevertheless germination cannot be guaranteed (Davis et al., 2004). No dormancy-

break treatment was applied to the Pinus pinaster seeds, since the objective was to 

mimic the natural germination conditions as much as possible. 

Common garden experiment. The common garden experiment was conducted 

under semi-natural conditions in a nursery (latitude 40º27’24.77” N, longitude 

3º45’06.32” W, 597 m above sea level) once the lab processing was completed, i.e. 

six months after the field sampling. Although the environmental conditions at the 

nursery did not match those at the sampling site, they were similar to the warmer 

and drier continental range of the species. 

We used plastic containers (57 x 37 x 32 cm) filled with natural pine forest soil 

(eutric cambisol after FAO taxonomy) collected in a natural Pinus pinaster stand 

located in the Central Range west of Madrid to ensure early seedling 

mycorrhization (Trappe, 1977; Pera and Álvarez, 1995; Buscardo et al., 2009). A 

bottom layer of 10 cm of expanded clay was added prior to the natural substrate to 

ensure water drainage and aeration of the roots.  

See appendix S2 for an overview of the study design. We sowed a total of 4620 

seeds, using a plastic grid to facilitate seed location and further measurements, and 

also to prevent any confusion with the eventual germination of seeds coming with 

the soil (although seed soil banks in pines are negligible). In short, with 10 seeds 
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per cone, 3 cones per cohort and tree, and at least 6 cohorts with a maximum of 12 

per tree, all for a total of 16 trees. The 30 seeds per cohort per tree were divided 

into six groups of five seeds each. This resulted in six batches of 770 seeds each. 

By hand, seeds from each batch were randomly planted across 10 containers 

(referred to here as a block), resulting in a total of 60 containers. The location of 

each seed within a container was recorded to allow for individual-level monitoring. 

Containers were covered with a mesh to protect seeds from predation. Pots were 

kept well-watered to ensure sufficient hydration for germination until the end of 

July. Germination and survival were recorded every three days from April to 

October, after which the monitoring frequency was reduced to every 10 days.  

Statistical analyses. First, we used a linear mixed model (LMM) to quantify the 

percentage of variance in seed mass explained by mother tree ID and cone age 

cohort by fitting each as a random effect. Their statistical significance was assessed 

using likelihood ratio tests. We subsequently included mother tree age, diameter 

growth, ring-width and SPEI5July for the year at embryo development/cone 

production as fixed covariates to quantify their roles in shaping variation in seed 

mass among mother trees, cohorts and blocks. To account for variation in the effect 

of age, diameter and ring width among individuals, all models included a random 

slope term for these covariates (Schielzeth and Forstmeier 2009). Note that because 

all seeds were collected in the same year, seed age and cohort are perfectly 

correlated (i.e. all seeds that are 10 years old were produced in 2007) whatever a 

mother tree’s age. However, we expected the random cohort effect to mostly 

capture random variation in the environmental conditions during cone and seed 

formation, whereas we expect the fixed maternal age covariate to capture 

systematic age-related changes.  
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Initially we used within-subject centering (Van de Pol and Wright, 2009) to 

separate within- versus between-individual effects of maternal age, diameter and 

ring width. To this end, we aggregated all measurements of each predictor for the 

same individual into an average value, and subsequently subtracted this individual 

mean from each measurement within an individual. We then fitted both the mean 

and the deviation of the mean as predictors in the model. While we acknowledge 

that statistical power was relatively low for this comparison, for none of these 

predictors we found a significant difference between the within- and the among-

individual effect (see Results). Hence, we subsequently fitted a similar model, but 

this time with the original measurements as fixed covariates. In addition, in order to 

complement the results and explanations, we fitted a mixed model to show the 

general relationship between maternal age and basal diameter, including tree and 

cohort as random effects.  

Second, we quantified the importance of maternal condition and seed mass on three 

aspects of offspring performance: germination probability, timing of germination, 

and seedling survival. Germination and survival probability were modelled as 

binary traits (germination/survival after germination until 224 days) with a 

binomial generalized linear mixed model (GLMM). Germination timing was 

modelled using a linear mixed model with days needed to germinate (i.e. 

germination day) as the response variable. All models included mother tree ID, 

cohort and experimental block as random effects, and seed mass, maternal age, 

diameter, ring width and SPEI as fixed covariates. These analyses were 

complemented by time-to-event analyses (also known as survival analyses) to show 

the effect of mother tree ID on seed germination. We used the Kaplan-Meier 
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method to estimate both the probability of germination in a given length of time 

(measured in days).  

All mixed models were fitted using the lme4 package (Bates et al., 2015) in R 

version 3.5.3 (R Core Team, 2019). Significance was inferred via Satterthwaite's 

degrees of freedom method as implemented in the lmerTest package (Kuznetsova 

et al., 2017). Figures were displayed using ggplot2 (Wickham, 2016), patchwork 

(Pedersen, 2020) and dplyr packages (Wickham et al., 2021). Kaplan-Meier 

survival curves were estimated using the survival package (Therneau, 2015). 

RESULTS 

Sampled trees ranged from 20 to 69 years of age with a basal diameter between 

16.3 and 34.2 cm. The first seeds germinated 17 days after sowing, and the last 

seeds recorded germinated as late as the second spring, 55 weeks after sowing. 

Mean seed mass ± standard deviation was 55.2 ± 12.5 mg, and varied significantly 

among trees (32% of variance explained; χ
2

1=1962.8, p<0.001) and cohorts (15% 

of variance explained; χ
2

1=844.54, p<0.001).  

By comparing within- and between- mother tree effects prior to fitting the final 

model, we found a non-significant effect of age within mothers (t14.4=-0.5, p=0.6), 

and a negative between- mother tree effect of age (t11.8=-2.56, p=0.025), i.e. older 

trees produced smaller seeds, but seed mass did not change with cone age within a 

tree. Despite a large amount of among-individual variation in within-individual 

slopes, overall seed mass decreased with maternal age (t13.9=-3.2, p<0.006, Table 1) 

(Fig. 2A). The effects of ring width were non-significant both within- (t14.4=0.3, 

p=0.77) and between- (t11.8=0.5, p=0.65) mother trees (Fig. 2B). The effect of tree 
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diameter on seed mass was positive and significant between individuals (t12.1=2.2, 

p=0.045), i.e bigger trees produced heavier seeds (Fig. 2C). 

If we ignore the distinction between within- and among-individual variation, since 

the differentiation of their effect is not significant, and analyse raw seed mass 

rather than individual means and deviations from these means (see Methods), we 

find that although basal diameter increases with age (t10.02=63.90, p<0.001, Fig. 3), 

a model including both maternal age and basal diameter again reveals a negative 

relationship between mother tree age and seed mass (i.e. older trees produce lighter 

seeds), whereas the effect of basal diameter tends to be positive (i.e. larger trees 

produce heavier seeds, Fig. 2). The effects of ring width and SPEI were non-

significant. See Table 1 for parameter estimates and statistical details. 

40 days after sowing, 50.8% of the seeds had germinated. Seedling survival was 

very high over this period, with 98.9% of the seedlings surviving until that date. Up 

until the onset of winter and the cessation of germination for that year, 224 days 

after sowing, 89% of the seeds had germinated and 83.3% of all seedlings were still 

alive. Note that the 11% of seeds that did not germinate until this time point cannot 

not be considered as failures as they may germinate at a later time point. 

Seed mass predicted whether a seed germinated or not as a binary response, with 

larger seeds being more likely to germinate (Table 2). None of the other predictors 

were statistically significant. 

The timing of germination on the other hand was unaffected by seed mass, but 

there was a significantly positive effect of maternal age, with older mothers 

producing seeds that germinate later, whereas the effect of basal diameter tends to 

be negative, with larger mothers producing seeds that germinate earlier (Table 3). 

The timing of germination was unaffected by ring width and SPEI.  
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To illustrate the effect of the mother trees on germination timing, we used the time-

to-event analysis method (Fig. 4). The vertical distance between 0 and 1 represents 

the change in cumulative probability of not germinating as the curve advances. We 

can see differences between trees.  

Finally, we found that both seed mass and germination timing showed a significant 

effect (χ
2

1=7.273, p<0.01; χ
2
1=127.426, p<0.001 respectively) on mortality, such 

that higher seed mass significantly reduced seedling mortality risk.  

DISCUSSION 

In this work we quantified the role of seed mass as a mediator of maternal effects 

on offspring performance in a long-lasting aerial seed bank of a conifer species, 

and the importance of maternal age and conditions in shaping these effects. With 

the seed, the independence of the next generation of plants begins (Bewley, 1997), 

therefore it is essential to disentangle the factors that will determine its future, 

including maternal condition and the environmental conditions during seed 

formation. Maternal age (Cooper et al., 2020) and its sensitivity to the environment 

can lead to variation in its growth, condition and physiological state (Schmid and 

Dolt, 1994; Galloway, 2005) that could have important consequences for the next 

generation, like shown in animals (see, for example Mousseau and Fox, 1998).  

We found significant differences in seed mass both between trees and among 

cohorts of the same mother tree, with 13.6% of the variation in seed mass being 

attributable to variation among trees versus 9.3% being attributable to cohort 

effects. This is in line with research on other species, where most variation in seed 

mass was also observed between individuals (Thompson, 1984; Kołodziejek, 2017; 

Wang and Ives, 2017). The variation in seed mass, both within and between mother 
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trees, is largely due to effects associated with the maternal tree and environmental 

conditions during seed development (Bladé and Vallejo, 2008). 

The first prediction of the Smith-Fretwell model (1974) is that plants should 

produce seeds of equal size. However, large seeds are costly (i.e. cost of 

reproduction) and we therefore expect seed mass to depend on the resource status 

of the mother plant (Geritz, 1995), which may vary over time and with age 

(Plaistow et al., 2007). Such variation will cause variation in seed mass between 

yearly crops of the same individual (Wulff, 1986). In line with this expectation, we 

found a substantial and statistically significant amount of variation among cohorts 

within individuals. High within-individual variation is a constant in many 

organisms, and in particular seed mass typically varies two to fourfold, even within 

individuals (Michaels et al., 1988). Noteworthy, we found up to five-fold variation 

between cohorts of some individuals, which is similar to results reported in other 

species of pine (Pinus aristata and P. flexilis, Borgman et al., 2014; P. nigra, 

Tiscar and Lucas-Borja, 2010, but see Castro, 1999 in P. sylvestris).  

We confirmed that the age of the mother tree had a negative effect on seed mass, 

suggestive of maternal senescence or perhaps of a maternal strategy, resulting in 

the production of smaller cones containing fewer and heavier seeds at younger age 

and larger cones with more though smaller seeds at older ages (Cruz et al., 2019). 

In other studies, maternal age has been shown to have a negative effect on 

offspring performance either directly or mediated by, for example, an effect of 

maternal age on seed size (Lembicz et al., 2011) or germination (Alonso-Crespo et 

al., 2020). At the same time, despite an increase in size with age, mother size 

(assessed by its diameter), had a significant positive relationship with seed mass; in 

other words, big young mothers produced larger seeds. This result confirms that 
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mother size and age have independent effects on seed mass: even when there is a 

positive correlation between age and diameter, the correlation is less strong than 

often believed (Fritts 1976; Pederson, 2010) and very often older trees are not the 

larger ones (see Appendix S3), particularly in natural and natural managed forests. 

In line with this, we found two or even three different growth trajectories across the 

individual trees (Fig. 3). However, we cannot associate these patterns with 

differences in the microenvironment, in terms of light or soil conditions. The 

history of silvicultural practices in this population could help explain these 

trajectories since they can directly or indirectly influence tree growth (Long et al., 

2004).  

Various studies that have examined the relationship between growth, measured as 

tree ring width, and reproductive output have provided evidence that reproduction 

reduces tree performance (Thomas, 2011; Lucas-Borja and Vacchiano, 2018). 

However, we found that annual ring-width was unrelated with seed mass and hence 

found no evidence for a trade-off between growth and reproduction. This is in fact 

in line with other studies examining maternal effects in other pine species, which 

found that inter-annual variability in mother twig growth during seed provisioning 

was not significantly related to differences in seed mass (Borgman et al., 2014). 

However, seed mass is only one aspect of reproductive investment, and more work 

using a more comprehensive measure of reproductive investment is needed.  

Climatic fluctuations, such as changes in precipitation and temperature patterns 

associated with climate change, can be an important determinant of reproductive 

performance (Pérez-Ramos et al., 2010, Basto et al., 2018, Hatzig et al., 2018). 

However, contrary to other works (Lacey et al., 1997, Murray et al., 2004), we 

found no effect of the climate experienced by the mothers during embryo 
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development (measured through the SPEI5July, Vicente-Serrano et al., 2010) on 

seed mass. The fact that our mother trees were of different age and size, and micro-

environmental differences in the natural stand could explain a more variable 

reaction to the same climatic factors at a given year. 

We found a significant positive effect of seed mass on germination success in line 

with a well-supported trend (Castro, 1999, Linkies et al., 2010, Cendán et al., 

2013). This could be a result of better-provisioned offspring from higher seed 

reserves having greater establishment success (Leishman et al., 2000; Herman and 

Sultan, 2011). However, when accounting for maternal traits, there was no effect of 

seed mass on the timing of germination. In our study, the age and diameter of the 

mother were the main effects, such that seeds from older trees (within the age range 

analysed) had a significant delay in germination, in line with other studies 

(Leishman et al., 2000; Alvarez et al., 2005), whereas seeds from larger trees 

germinate earlier. Age effects could be suggestive of senescence or could indicate 

that seeds from older plants have a greater physical or mechanical dormancy, i.e. 

seeds are more impermeable or have a harder endosperm (Alvarez et al., 2005). 

Importantly, germination timing has been postulated to be more determinant to the 

success of post-fire regeneration than germination percentage per se since 

seedlings will have to compete efficiently for light and water (Cruz et al., 2017). 

Confirming this assertion, in our experiment early-germinating seeds (before June) 

had much lower mortality risk (9%) compared to those germinating in midsummer 

(28% by the end of this season). Early seedling emergence in the growing season 

confers a greater rate of survival or better growth if early emergence provides 

advantages with respect to an environmental cue (Verdú and Traveset, 2005; 

Castro, 2006).  
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This advantage of early germination is more evident in milder Mediterranean 

climates where late frosts are less frequent or intense and summer drought is the 

main source of seedling mortality (Gómez-Aparicio et al., 2005). Drought‐related 

mortality due mainly to midsummer has the potential to act as a filter during early 

life stages (Warwell and Shaw, 2019). In addition, seed germination timing may 

influence subsequent seedling phenology and developmental changes by 

determining the seasonal conditions experienced by seedlings, as studied in annual 

plants (Donohue, 2009), in which the timing of germination determined whether an 

annual or biennial life cycle was expressed. However, ensuring a wide range of 

dormancy due to age effects may be an advantage under an unpredictable 

Mediterranean climate. Nevertheless, beyond the high influence of germination 

timing, seed mass had also a positive effect on reducing mortality risk, favouring 

the survival of the better-provisioned seedlings (Simons and Johnston, 2000). 

Seed banks provide an exciting and challenging model for studying the 

evolutionary implications of genetic and non-genetic transgenerational effects. 

Even in long-lived plants like forest trees, maternal effects related to seed resource 

allocation and epigenetic mechanisms linked to embryogenesis and seed maturation 

may contribute to the rapid adaptation of these long‐lived organisms for coping 

with environmental changes (Herman and Sultan, 2011; Yakovlev et al., 2012; 

Vivas et al., 2013). For instance, temperature experienced by the mother tree 

during seed formation has been found to shape phenological responses of seedlings 

(Johnsen et al., 2005). This paper provides a new insight into the role of the 

maternal environment and age in shaping the performance of its offspring, 

complementing past and future studies into genetic effects, transgenerational 

plasticity -known as epigenetic memory- (Henderson and Jacobsen, 2007; 
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Yakovlev et al., 2012; Correia et al., 2013; Vivas et al., 2013) and into other forms 

of ecological inheritance such as associations between plants and the microbiome 

(Vivas et al., 2015). In addition, it could lay the foundation for further research into 

the importance of maternal effects as an adaptive strategy.  

Our study opens a new path in our understanding of the trans-generational 

plasticity of long-lived plants under a changing environment. This is highly 

relevant as climate change is aggravated and can have implications for the adaptive 

management of natural forests. 
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Table 1. Determinants of seed mass (measured in milligrams). Fixed effect estimates, standard 

errors, t‐values, degrees of freedom using Satterthwaite approximation (as implemented in the 

lmerTest package, Kuznetsova et al., 2017) and p‐values. SPEI: Standardised Precipitation-

Evapotranspiration Index (Vicente-Serrano et al., 2010). 

  Estimate Std. Error t value df Pr(>|t|) 

Maternal age -5.24  1.63 -3.2 13.9 0.006 

Tree Diameter 4.37  1.88 2.3  13.1 0.037 
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Ring width 1.14  2.54 0.5  19.3 0.659 

SPEI -0.18  1.87 -0.1 8.9 0.928 

 

Table 2. Predictors of germination probability based on a binomial generalised linear mixed model. 

P-values are based on likelihood ratio tests (LRT). Estimates are on a logit scale. SPEI: 

Standardised Precipitation-Evapotranspiration Index (Vicente-Serrano et al., 2010). 

  Estimate  Std. Error Chi2 Pr (Chi) 

Seed Weight 0.04 0.01 93.23 <0.001 

Maternal Age -0.04 0.14 0.101 0.751 

Tree Diameter -0.01 0.13 0.006 0.937 

Ring Width 0.08 0.08 0.976 0.323 

SPEI 0.07 0.13 0.065 0.799 

 

Table 3. Determinants of the timing of germination. Estimated regression parameters, standard 

errors, t‐values, degrees of freedom using Satterthwaite approximation (as implemented in the 

lmerTest package, Kuznetsova et al., 2017) and P‐values for the LMM about germination timing. 

SPEI: Standardised Precipitation-Evapotranspiration Index (Vicente-Serrano et al., 2010). 

 Estimate Std. Error t value df Pr(>|t|) 

Seed weight -0.07  0.07 -1.1  2451.1 0.286 

Maternal age 7.78  2.84 2.7 20.1 0.013 

Diameter -5.51  2.03 -2.7 69.10 0.009 

Ring width 0.86  0.86 1.0 255.39 0.314 
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SPEI -1.0  1.75 -0.6 9.01 0.580 

Figure Legends 

 

Fig. 1. Representative pictures of the natural population of Pinus pinaster Ait. located in Tabuyo del 

Monte (northwestern Spain): (A) One of the mother trees sampled as an example, (B) an aerial seed 

bank with serotinous cones from different cohorts, (C) a detail of a branch with serotinous cones 

(see Appendix 1 to complement figures 1B and 1C) and (D) a subsample of serotinous cones. 

 

Fig. 2. Within- and between- mother trees effects in seed mass for our sixteen sampled mother trees. 

The thinner black lines show individual linear regressions for each mother tree. The thicker black 

line in each panel was drawn from the estimated parameters in the mixed model when that predictor 

was significant (Table 1). Y-axis represents residual seed mass after accounting for calendar year 
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effects (cohort). In the x-axis, the effect of (A) maternal age; (B) centered ring width and (C) tree 

diameter.  

 

Fig. 3. Relationship between age and diameter of mother trees. Large points correspond to the mean 

age of each mother tree and small points represent values for each cohort within trees. The black 

line was drawn from the estimated parameters of the mixed model fitted (t10.02=63.90, p<0.001).  

 

Fig. 4. Kaplan–Meier estimates of germination probability curves for all trees, illustrating the 

differences in the germination time between individuals. The vertical distance between 0 and 1 

represents the change in cumulative probability of germination as the curve advances. 




