243 research outputs found

    Past, present and future criteria to breed crops for water-limited environments in West Africa

    Get PDF
    Asia's Green Revolution of the 1960s and 1970s has largely bypassed West Africa, and "modern" (high-yielding, input responsive) germplasm for staple crops has found comparatively little adoption, except for systems that are have good access to markets and sufficient water resources. It is unlikely, however, that breeding objectives conserving traditional crop characteristics as found in extensive systems would have been more successful. The authors identify systems caught in the agricultural transition from subsistence to intensified, market-oriented production as the most important target for crop improvement, and provide examples of new breeding objectives for cowpea, sorghum and upland rice. In each of these cases, breeders, with the help of physiologists, have developed innovative plant-type concepts that combine improved yield potential and input responsiveness with specific traditional crop characteristics that remain essential during the agricultural transition. In the case of cowpea, dual-purpose varieties were developed that produce a good grain yield due to an erect plant habit, then produce new leaves enabling a second harvest of green foliage. For upland rice systems that are limited by labour (mainly needed to control weeds that abound due to shortened fallow periods), a weed competitive plant type was developed from Oryza sativa × Oryza glaberrima crosses. Lastly, sorghum breeders who had previously deselected photoperiod sensitivity are now re-inserting sensitivity into plants having "modern" architecture, in order to allow for flexible sowing dates while maintaining an agro-ecologically optimal time of flowering near the end of the wet season. The ecophysiological basis of these plant types, their place in current and future cropping systems, as well as the problem of under-funding for their realisation, are discussed

    A Powerful Test of Parent-of-Origin Effects for Quantitative Traits Using Haplotypes

    Get PDF
    Imprinting is an epigenetic phenomenon where the same alleles have unequal transcriptions and thus contribute differently to a trait depending on their parent of origin. This mechanism has been found to affect a variety of human disorders. Although various methods for testing parent-of-origin effects have been proposed in linkage analysis settings, only a few are available for association analysis and they are usually restricted to small families and particular study designs. In this study, we develop a powerful maximum likelihood test to evaluate the parent-of-origin effects of SNPs on quantitative phenotypes in general family studies. Our method incorporates haplotype distribution to take advantage of inter-marker LD information in genome-wide association studies (GWAS). Our method also accommodates missing genotypes that often occur in genetic studies. Our simulation studies with various minor allele frequencies, LD structures, family sizes, and missing schemes have uniformly shown that using the new method significantly improves the power of detecting imprinted genes compared with the method using the SNP at the testing locus only. Our simulations suggest that the most efficient strategy to investigate parent-of-origin effects is to recruit one parent and as many offspring as possible under practical constraints. As a demonstration, we applied our method to a dataset from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) to test the parent-of-origin effects of the SNPs within the PPARGC1A, MTP and FABP2 genes on diabetes-related phenotypes, and found that several SNPs in the MTP gene show parent-of-origin effects on insulin and glucose levels

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Temporal analysis of natural variation for the rate of leaf production and its relationship with flowering initiation in Arabidopsis thaliana

    Get PDF
    Vegetative growth and flowering initiation are two crucial developmental processes in the life cycle of annual plants that are closely associated. The timing of both processes affects several presumed adaptive traits, such as flowering time (FT), total leaf number (TLN), or the rate of leaf production (RLP). However, the interactions among these complex processes and traits, and their mechanistic bases, remain largely unknown. To determine the genetic relationships between them, the natural genetic variation between A. thaliana accessions Fei-0 and Ler has been studied using a new population of 222 Ler×Fei-0 recombinant inbred lines. Temporal analysis of the parental development under a short day photoperiod distinguishes two vegetative phases differing in their RLP. QTL mapping of RLP in consecutive time intervals of vegetative development indicates that Ler/Fei-0 variation is caused by 10 loci whose small to moderate effects mainly display two different temporal patterns. Further comparative QTL analyses show that most of the genomic regions affecting FT or TLN also alter RLP. In addition, the partially independent genetic bases observed for FT and TLN appear determined by several genomic regions with two different patterns of phenotypic effects: regions with a larger effect on FT than TLN, and vice versa. The distinct temporal and pleiotropic patterns of QTL effects suggest that natural variation for flowering time is caused by different genetic mechanisms involved in vegetative and/or reproductive phase changes, most of them interacting with the control of leaf production rate. Thus, natural selection might contribute to maintain this genetic variation due to its phenotypic effects not only on the timing of flowering initiation but also on the rate of vegetative growth
    corecore