7 research outputs found

    LALINET: The First Latin American–Born Regional Atmospheric Observational Network

    Get PDF
    Sustained and coordinated efforts of lidar teams in Latin America at the beginning of the 21st century have built LALINET (Latin American Lidar NETwork), the only observational network in Latin America created by the agreement and commitment of Latin American scientists. They worked with limited funding but an abundance of enthusiasm and commitment toward their joint goal. Before LALINET, there were a few pioneering lidar stations operating in Latin America, described briefly here. Bi-annual Latin American Lidar Workshops, held from 2001 to the present, supported both the development of the regional lidar community and LALINET. At those meetings, lidar researchers from Latin America meet to conduct regular scientific and technical exchanges among themselves and with experts from the rest of the world. Regional and international scientific cooperation has played an important role for the development of both the individual teams and the network. The current LALINET status and activities are described, emphasizing the processes of standardization of the measurements, methodologies, calibration protocols, and retrieval algorithms. Failures and successes achieved in the buildup of LALINET are presented. In addition, the first LALINET joint measurement campaign and a set of aerosol extinction profile measurements obtained from the aerosol plume produced by the Calbuco volcano eruption on April 22, 2015, are described and discussed.Fil: Antuña Marrero, Juan Carlos. Centro Meteorológico de Camagüey; CubaFil: Landulfo, Eduardo. Instituto de Pesquisas Energéticas e Nucleares; BrasilFil: Estevan, René. Centro Meteorológico de Camagüey; CubaFil: Barja, Boris. Centro Meteorológico de Camagüey; Cuba. Universidade de Sao Paulo; BrasilFil: Robock, Alan. State University of New Jersey; Estados UnidosFil: Wolfram, Elian Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Ristori, Pablo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Clemesha, Barclay. Upper Atmosphere Research Group; BrasilFil: Zaratti, Francesco. Universidad Mayor de San Andrés; BoliviaFil: Forno, Ricardo. Universidad Mayor de San Andrés; BoliviaFil: Armandillo, Errico. ESTEC; Países BajosFil: Bastidas, Álvaro E.. Universidad Nacional de Colombia. Sede Medellin; ColombiaFil: de Frutos Baraja, Ángel Máximo. Universidad de Valladolid; EspañaFil: Whiteman, David N.. National Aeronautics and Space Administration; Estados UnidosFil: Quel, Eduardo Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Barbosa, Henrique M. J.. Universidade de Sao Paulo; BrasilFil: Lopes, Fabio. Comissao Nacional de Energia Nuclear. Centro de Lasers e Aplicacoes. Instituto de Pesquisas Energeticas e Nucleares.; BrasilFil: Montilla-Rosero, Elena. Universidad de Concepción; Chile. Universidad Escuela de Administración, Finanzas e Instituto Tecnológico; ColombiaFil: Guerrero Rascado, Juan L.. Comissao Nacional de Energia Nuclear. Centro de Lasers e Aplicacoes. Instituto de Pesquisas Energeticas e Nucleares.; Brasil. Universidad de Granada; Españ

    Seasonal variations of gravity wave activity and spectra derived from sodium temperature lidar

    No full text
    Gravity wave measurements were carried out by a newly developed sodium temperature lidar at São José dos Campos (23°S, 46°W). The seasonal variations of gravity wave activity and spectra derived from temperature data are investigated. The total temperature perturbation and temperature vertical power spectra, Ft(m) at 2π/(8 km), 2π/(4 km), and 2π/(2 km) all show that the semiannual maxima occur near the equinoxes, which is consistent with our earlier study (Yang et al., 2006) using only sodium concentration data. The vertical structure of the mean temperature variance could be related to the vertical distribution of N2. Large nightly variability of the temperature perturbation spectral slope was also found as in other sodium concentration lidar studies. The comparison between temperature and density perturbations induced by quasi-random waves was investigated, and the agreement was found to be good on most (78%) nights. Good agreement between monochromatic wave-induced temperature perturbations and sodium concentration perturbations has also been found, and the wave parameters derived from temperature data and sodium concentration data are comparable.Pages: D1810

    Trends in the nonvolcanic component of stratospheric aerosol over the period 1971-2004

    No full text
    The six longest records of stratospheric aerosol (in situ measurements at Laramie, Wyoming, lidar records at: Garmisch-Partenkirchen, Germany; Hampton, Virginia; Mauna Loa, Hawaii; São José dos Campos, Brazil, and SAGE II measurements) were investigated for trend by (1) comparing measurements in the 3 volcanically quiescent periods since 1970 using standard analysis of variance techniques, and (2) analyzing residuals from a time/volcano dependent empirical model applied to entire data sets. A standard squared-error residual minimization technique was used to estimate optimum parameters for each measurement set, allowing for first order autocorrelation, which increases standard errors of trends but does not change magnitude. Analysis of variance over the 3 volcanically quiescent periods is controlled by the end points (pre-El Chichón and post-Pinatubo), and indicates either no change (Garmisch, Hampton, São José dos Campos, Laramie-0.15 μm) or a slight, statistically insignificant, decrease (Mauna Loa, Laramie-0.25 μm), -1 ± 0.5% yr-1. The empirical model was applied to the same records plus 1020 nm SAGE II data separated into 33 latitude/altitude bins. No trend in stratospheric aerosol was apparent for 31 of 33 SAGE II data sets, 3 of 4 lidar records, and in situ measurements at 0.15 μm. For Hampton and Laramie-0.25 μm, the results suggest a weak negative trend, -2 ± 0.5% yr-1, while 2 SAGE II data sets (30-35 km, 30° and 40°N) suggest a positive trend of similar magnitude. Overall we conclude that no long-term change in background stratospheric aerosol has occurred over the period 1970-2004. Copyright 2006 by the American Geophysical Union
    corecore