50 research outputs found

    Putting the geology back into Earth models

    Get PDF
    New digital methods for data capture can now provide photorealistic, spatially precise, and geometrically accurate three-dimensional (3-D) models of rocks exposed at the Earth's surface [Xu et al., 2000; Pringle et al., 2001; Clegg et al., 2005]. These “virtual outcrops” have the potential to create a new form of laboratory-based teaching aids for geoscience students, to help address accessibility issues in fieldwork, and generally to improve public awareness of the spectacular nature of geologic exposures from remote locations worldwide. This article addresses how virtual outcrops can provide calibration, or a quantitative “reality check,” for a new generation of high-resolution predictive models for the Earth's subsurface

    A Prototype Virginia Ground Station Network

    Get PDF
    This paper provides a detailed technical description of a prototype ground station network, the Virginia Ground Station Network (VGSN), developed for the Virginia Cubesat Constellation (VCC) mission. Virginia Tech (VT), University of Virginia (UVA), and Old Dominion University (ODU) have each constructed ground stations to communicate with their respective VCC spacecraft. Initially, each university was responsible for commanding its own spacecraft via its own ground station. As the mission progressed, it was decided to network the ground stations and operations centers together to provide backup communications capability for the overall mission. The NASA Wallops Flight Facility (WFF) UHF smallsat ground station was also included in this network. Implementing the VGSN led to the establishment of successful communications with UVA’s Libertas spacecraft via the VT Ground Station (VTGS), demonstrating the utility of collaboration and of the VGSN. This paper provides a technical overview of the VGSN, details concerning signal processing requirements for the mission, a discussion concerning the radio regulatory process as applied to the VCC mission, and plans for future upgrades of the network to continue to support Virginia (and partner institution) small satellite missions

    Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial.

    Get PDF
    BACKGROUND: Secondary progressive multiple sclerosis, for which no satisfactory treatment presently exists, accounts for most of the disability in patients with multiple sclerosis. Simvastatin, which is widely used for treatment of vascular disease, with its excellent safety profile, has immunomodulatory and neuroprotective properties that could make it an appealing candidate drug for patients with secondary progressive multiple sclerosis. METHODS: We undertook a double-blind, controlled trial between Jan 28, 2008, and Nov 4, 2011, at three neuroscience centres in the UK. Patients aged 18-65 years with secondary progressive multiple sclerosis were randomly assigned (1:1), by a centralised web-based service with a block size of eight, to receive either 80 mg of simvastatin or placebo. Patients, treating physicians, and outcome assessors were masked to treatment allocation. The primary outcome was the annualised rate of whole-brain atrophy measured from serial volumetric MRI. Analyses were by intention to treat and per protocol. This trial is registered with ClinicalTrials.gov, number NCT00647348. FINDINGS: 140 participants were randomly assigned to receive either simvastatin (n=70) or placebo (n=70). The mean annualised atrophy rate was significantly lower in patients in the simvastatin group (0·288% per year [SD 0·521]) than in those in the placebo group (0·584% per year [0·498]). The adjusted difference in atrophy rate between groups was -0·254% per year (95% CI -0·422 to -0·087; p=0·003); a 43% reduction in annualised rate. Simvastatin was well tolerated, with no differences between the placebo and simvastatin groups in proportions of participants who had serious adverse events (14 [20%] vs nine [13%]). INTERPRETATION: High-dose simvastatin reduced the annualised rate of whole-brain atrophy compared with placebo, and was well tolerated and safe. These results support the advancement of this treatment to phase 3 testing. FUNDING: The Moulton Foundation [charity number 1109891], Berkeley Foundation [268369], the Multiple Sclerosis Trials Collaboration [1113598], the Rosetrees Trust [298582] and a personal contribution from A Pidgley, UK National Institute of Health Research (NIHR) University College London Hospitals/UCL Biomedical Research Centres funding scheme

    Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis.

    Get PDF
    BACKGROUND: Frontotemporal dementia is a highly heritable neurodegenerative disorder. In about a third of patients, the disease is caused by autosomal dominant genetic mutations usually in one of three genes: progranulin (GRN), microtubule-associated protein tau (MAPT), or chromosome 9 open reading frame 72 (C9orf72). Findings from studies of other genetic dementias have shown neuroimaging and cognitive changes before symptoms onset, and we aimed to identify whether such changes could be shown in frontotemporal dementia. METHODS: We recruited participants to this multicentre study who either were known carriers of a pathogenic mutation in GRN, MAPT, or C9orf72, or were at risk of carrying a mutation because a first-degree relative was a known symptomatic carrier. We calculated time to expected onset as the difference between age at assessment and mean age at onset within the family. Participants underwent a standardised clinical assessment and neuropsychological battery. We did MRI and generated cortical and subcortical volumes using a parcellation of the volumetric T1-weighted scan. We used linear mixed-effects models to examine whether the association of neuropsychology and imaging measures with time to expected onset of symptoms differed between mutation carriers and non-carriers. FINDINGS: Between Jan 30, 2012, and Sept 15, 2013, we recruited participants from 11 research sites in the UK, Italy, the Netherlands, Sweden, and Canada. We analysed data from 220 participants: 118 mutation carriers (40 symptomatic and 78 asymptomatic) and 102 non-carriers. For neuropsychology measures, we noted the earliest significant differences between mutation carriers and non-carriers 5 years before expected onset, when differences were significant for all measures except for tests of immediate recall and verbal fluency. We noted the largest Z score differences between carriers and non-carriers 5 years before expected onset in tests of naming (Boston Naming Test -0·7; SE 0·3) and executive function (Trail Making Test Part B, Digit Span backwards, and Digit Symbol Task, all -0·5, SE 0·2). For imaging measures, we noted differences earliest for the insula (at 10 years before expected symptom onset, mean volume as a percentage of total intracranial volume was 0·80% in mutation carriers and 0·84% in non-carriers; difference -0·04, SE 0·02) followed by the temporal lobe (at 10 years before expected symptom onset, mean volume as a percentage of total intracranial volume 8·1% in mutation carriers and 8·3% in non-carriers; difference -0·2, SE 0·1). INTERPRETATION: Structural imaging and cognitive changes can be identified 5-10 years before expected onset of symptoms in asymptomatic adults at risk of genetic frontotemporal dementia. These findings could help to define biomarkers that can stage presymptomatic disease and track disease progression, which will be important for future therapeutic trials. FUNDING: Centres of Excellence in Neurodegeneration

    Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: A cross-sectional analysis

    Get PDF
    Background: Frontotemporal dementia is a highly heritable neurodegenerative disorder. In about a third of patients, the disease is caused by autosomal dominant genetic mutations usually in one of three genes: progranulin (. GRN), microtubule-associated protein tau (. MAPT), or chromosome 9 open reading frame 72 (. C9orf72). Findings from studies of other genetic dementias have shown neuroimaging and cognitive changes before symptoms onset, and we aimed to identify whether such changes could be shown in frontotemporal dementia. Methods: We recruited participants to this multicentre study who either were known carriers of a pathogenic mutation in GRN, MAPT, or C9orf72, or were at risk of carrying a mutation because a first-degree relative was a known symptomatic carrier. We calculated time to expected onset as the difference between age at assessment and mean age at onset within the family. Participants underwent a standardised clinical assessment and neuropsychological battery. We did MRI and generated cortical and subcortical volumes using a parcellation of the volumetric T1-weighted scan. We used linear mixed-effects models to examine whether the association of neuropsychology and imaging measures with time to expected onset of symptoms differed between mutation carriers and non-carriers. Findings: Between Jan 30, 2012, and Sept 15, 2013, we recruited participants from 11 research sites in the UK, Italy, the Netherlands, Sweden, and Canada. We analysed data from 220 participants: 118 mutation carriers (40 symptomatic and 78 asymptomatic) and 102 non-carriers. For neuropsychology measures, we noted the earliest significant differences between mutation carriers and non-carriers 5 years before expected onset, when differences were significant for all measures except for tests of immediate recall and verbal fluency. We noted the largest Z score differences between carriers and non-carriers 5 years before expected onset in tests of naming (Boston Naming Test -0·7; SE 0·3) and executive function (Trail Making Test Part B, Digit Span backwards, and Digit Symbol Task, all -0·5, SE 0·2). For imaging measures, we noted differences earliest for the insula (at 10 years before expected symptom onset, mean volume as a percentage of total intracranial volume was 0·80% in mutation carriers and 0·84% in non-carriers; difference -0·04, SE 0·02) followed by the temporal lobe (at 10 years before expected symptom onset, mean volume as a percentage of total intracranial volume 8·1% in mutation carriers and 8·3% in non-carriers; difference -0·2, SE 0·1). Interpretation: Structural imaging and cognitive changes can be identified 5-10 years before expected onset of symptoms in asymptomatic adults at risk of genetic frontotemporal dementia. These findings could help to define biomarkers that can stage presymptomatic disease and track disease progression, which will be important for future therapeutic trials. Funding: Centres of Excellence in Neurodegenerati
    corecore