UNIVERSITYW

This is a repository copy of Safety Assurance Objectives for Autonomous Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/157598/

Version: Published Version

Book:

Alexander, Rob orcid.org/0000-0003-3818-0310, Asgari, Hamid, Ashmore, Rob et al. (15
more authors) (2020) Safety Assurance Objectives for Autonomous Systems. Safety
Critical Systems Club , (112pp).

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose -
university consortium eprinis@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/

Safety assurance objectives for
Autonomous Systems

Version 2.0 [SCSC-153A]

Safety of Autonomous Systems Working Group [SASWG))

-

J

ISBN: 978-1654029050
SCSC Publication Number: SCSC-153A
Permanent URL: https://scsc.uk/SCSC-153A

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO
Box 1866, Mountain View, CA 94042, USA. You are free to share the material in any form and adapt the
material for any purpose providing you attribute the material to the Safety Critical Systems Club (SCSC)
Safety of Autonomous Systems Working Group (SASWG), reference the source material, include the licence
details above, and indicate if any changes were made. See the license for full details.

Cover photo by Markus Spiske, temporausch.com. Obtained from https://www.pexels.com/.

Distribution of hard copies of this document at the 2020
Safety-critical Systems Symposium was kindly supported
by Rajiv Bongirwar of HEMRA] Consultants Ltd UK

. [He=y| -
(trading as HEMRA) CONSULTING). H — M RA
[r=—=—x]

Web site: hemraj.co.uk.
Email: director@hemraj.co.uk.

The Safety Critical Systems Club (SCSC) is the professional network for sharing knowledge about
safety-critical systems. It brings together: engineers and specialists from a range of disciplines working
on safety-critical systems in a wide variety of industries; academics researching the arena of safety-critical
systems; providers of the tools and services that are needed to develop the systems; and the regulators
who oversee safety. Through publications, seminars, workshops, tutorials, a web site and, most importantly,
at the annual Safety-critical Systems Symposium (SSS), it provides opportunities for these people to
network and benefit from each other’s experience in working hard at the accidents that don't happen.
It focuses on current and emerging practices in safety engineering, software engineering and product and
process safety standards.

This document was written by the Safety of Autonomous Systems Working Group (SASWG), which is
convened under the auspices of the SCSC. The goal of the SASWG is to produce clear guidance on
how autonomous systems and autonomy technologies should be managed in a safety related context,
throughout the lifecycle, in a way that is tightly focused on challenges unique to autonomy. The document
was formally released at SSS'20, 11-13 February 2020.

Comments on this document are actively encouraged. These can be emailed to:

saswg-comments@scsc.uk

While the authors and the publishers have used reasonable endeavours to ensure that the information and
guidance given in this work is correct, all parties must rely on their own skill and judgement when making
use of this work and obtain professional or specialist advice before taking, or refraining from, any action
on the basis of the content of this work. Neither the authors nor the publishers make any representations
or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or
availability with respect to such information and guidance for any purpose, and they will not be liable for
any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or
damage whatsoever (including as a result of negligence) arising out of, or in connection with, the use of this
work. The views and opinions expressed in this publication are those of the authors and do not necessarily
reflect those of their employers, the SCSC or other organisations.

Safety Assurance Objectives for Autonomous Systems

The Safety of Autonomous Systems Working Group [SASWG]

January 2020

Change History

Version By ‘ Status ‘ Date
SCSC-153 The SASWG Team For publication at SSS'19 JAN-2019
SCSC-153A The SASWG Team For publication at SSS'20 JAN-2020

Changes Since the Last Edition

The most significant change since the last edition has been the population of the autonomy
architecture-level and platform-level frameworks. As part of this change, the adaptation projection was
moved from the computation-level to the autonomy architecture-level, where it is better placed.

Objectives are now written in a form that focuses on the intended outcome, rather than being expressed
as a requirement. For example, the form “Data is acquired and controlled appropriately” is used in
preference to “Data should be acquired and controlled appropriately”. This change means the wording
of the computation-level objectives has changed from the previous version. Despite this, the intent of the
objectives remains the same.

The increased scope of the current version, combined with greater availability of other work (external to
the SASWG), has allowed a larger number of top-level comparison activities to be conducted. These are
recorded in a number of appendixes. Individually and collectively these provide increased confidence in
the objectives listed in this document.

SCSC-153A (Jan 2020)

Contents

1 Introduction
1.1 Document Aimand SCOPE o
1.2 Frameworks, Projections and Objectives L
1.3 DocumentStatus
1.4 Terminology o

1.5 Document Structure

2 Computation-Level Framework: Description
2.1 Projections

2.2 SUMMAIY . .« oo

3 Computation-Level Framework: Objectives
31 EXPErIeNCE . . o o
3.2 Task .o
3.3 Algorithm .. o
34 Software ..o

3.5 Hardware . . .

4 Autonomy Architecture-Level Framework: Description
A7 ProjeCtionS o

A2 SUMMAIY . . o o

5 Autonomy Architecture-Level Framework: Objectives
51 Tolerance
5.2 Information Provision

53 Adaptation

6 Platform-Level Framework: Description
6.1 Behavioural Specification
6.2 Interacting Iltems

6.3 People . . .

1

11

14

18

20

27

23

23

24

25

25

29

32

35

CONTENTS

6.4 ENVIrONMENT

0.5 SUMMAIY o

7 Platform-Level Framework: Objectives
7.1 Behavioural Specification
7.2 Interacting Iltems
7.3 People ..o

7.4 Environment

8 Summary
8.1 Computation-Level
8.2 Autonomy Architecture-Level

8.3 Platform-Level

Appendix A Computation-Level Framework: Justification
A1 Computation-Level Frameworks
A2 Framework Mappings

A3 Software and ML Development Mappings

Appendix B Computation-Level Objectives: Justification
B.1 Requirements fora NN Standard

B.2 ML-Related Gaps in an Automotive Standard

Appendix C Platform-Level Framework: Justification
C.1 Platform-Level Frameworks

C.2 Framework Mappings

Appendix D Comparison with AAIP Body of Knowledge
D.1 Defining Required Behaviour
D.2 Implementation to Provide the Required Behaviour
D.3 Understanding and Controlling Deviations from Required Behaviour
D.4 Gaining Approval for Operation

D.5 Non-Related Objectives

53

53

54

55

57

57

61

63

65

65

66

69

69

72

77

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Appendix E Comparison with UL4600
E.1 UL4600 Sections

E2 SUMMary . . .

Appendix F Comparison with OECD Principles on Al

F1 o Principles . . . o

Appendix G Known Issues

Appendix H Abbreviations

Appendix| References

Appendix) Contributors

81

81

84

85

85

87

89

93

29

CONTENTS

CONTENTS

This page is intentionally blank

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

1 Introduction

1.1 Document Aim and Scope

This document aims to provide clear, practical, pan-domain guidance on the safety assurance of
Autonomous Systems (AS). In particular:

e The document is intended to be of use to a wide readership, including: developers of autonomous
systems; Artificial Intelligence (Al) and Machine Learning (ML) practitioners; safety engineers;
regulatory authorities; and managers (at a range of levels).

e There is a deliberate focus on aspects directly related to autonomy, and enabling technologies such
as Al and ML, rather than more general safety engineering or system engineering, where it is assumed
that relevant general standards, guidelines and best practice will be applied. The intent is to avoid
duplicating existing guidance relating to these general topics.

e There is a deliberate focus on AS that use Al developed using ML. Although it is possible to envisage
AS that do not use these technologies, Al and ML are considered to represent the greatest assurance
challenges; they are also expected to be widely used.

e The guidance is intended to be widely applicable. It is not tied to any specific development
approach, system lifecycle or safety argument structure. To achieve this wide applicability, terms
like “appropriate” and “suitable” are occasionally used. In such cases, users of this document would
be expected to describe, and justify, how these terms have been interpreted in their specific context.

e There is intentionally very little mention of legal and / or regulatory requirements. It is assumed that
these will be identified and demonstrably complied with as part of normal practice.

e [ssues related to staff competencies are deliberately excluded from consideration. Similarly, issues
that are most appropriately addressed at an organisational, or enterprise, level are also excluded.
These are expected to be covered by an existing Safety Management System (SMS), which could be
supplemented by the considerations in this document.

e |ssues related to domain-specific certification (e.g., liaison with regulators) are deliberately excluded
from consideration. However, the objectives listed in this document would be expected to inform any
discussions with regulatory authorities.

e This document makes no distinction based on criticality level, that is, there is no equivalent of Safety
Integrity Levels (SILs) or Development Assurance Levels (DALs). These types of distinction may be
included in future versions of this document.

1.2 Frameworks, Projections and Objectives

Three frameworks have been used to develop and structure the guidance: computation; autonomy
architecture; and platform.

These frameworks are used purely as a tool for the specific purpose of identifying objectives that need to
be addressed to achieve demonstrably safe autonomous systems. Different frameworks may be applicable
to, or more appropriate for, the systems that are being developed by users of this document. In such cases
there is no expectation that users structure their development efforts to directly align with the frameworks
adopted in this document.

INTRODUCTION

1

The frameworks used in this document are briefly described below:

e The computation-level framework addresses implementation at the software and computational
hardware levels. It focuses on mapping an input to an output. Activities associated with this level
typically relate to fault prevention. This is the lowest conceptual level considered.

e The autonomy architecture-level framework addresses how computations can be integrated into a
system, or platform. Activities at this level typically relate to fault tolerance.

e The platform-level framework addresses what the final autonomous entity should do and what effects
it should have on its environment. In essence, the focus is on requirements. This is the highest
conceptual level considered.

In general, a platform may contain multiple autonomy architectures, each of which may contain multiple
computations. This relationship is illustrated in Figure 1, where dashed grey lines represent optional items.

Platform

Autonomy Architecture

Computation

Figure 1: Relationship between Framework Levels

Table 1 includes two examples that illustrate the distinction between platform, autonomy architecture and
computation within the context of this document.

Table 1: Example Platforms, Autonomy Architecture Components and
Computations

Item ‘ Illustration One Illustration Two ‘
Example Platform Self-Driving Car Medical Diagnosis Application
Example Autonomy Architecture Sensor Health Checks, Sanity Integrity Checks on Supplied
Components Checks on Generated Route Image, Using Multiple Classifiers

Image Classification (Benign /

Example Computation Route Planning Malignant)

A series of projections is associated with each framework. The projections provide different perspectives;
they provide different ways of viewing each framework, in order to elicit associated objectives.
Consequently, whilst each projection emphasises a particular aspect that is relevant to the framework
level, the projections are not intended to be strictly independent, distinct or non-overlapping. Whilst they
have been useful in developing this document, for example, by splitting the overall scope into manageable

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

parts, the projections themselves are not intended to be of any great significance in their own right. As
was the case with the frameworks, there is no expectation that a user of this document will structure their
development efforts around the specific projections used within this guidance.

A collection of objectives are listed against each projection. Even though the projection has been used
as part of the process of eliciting objectives, an objective's scope may be wider than its parent projection;
equivalently, the projection provides context, rather than bounds, for the objective.

Each objective is accompanied by a discussion that illustrates how the objective contributes to AS safety.
This is followed by examples of approaches that could be taken to satisfy, or partially satisfy, the objective.
These examples are not intended to be prescriptive; there may be other ways of satisfying an objective.
Likewise, the examples do not necessarily represent a preferred way of satisfying an objective. They are
included solely to demonstrate the feasibility of satisfying at least part of the objective.

As with frameworks and projections, there is no expectation that a user of this document will slavishly follow
the way the objectives have been ordered and structured within this guidance. For example, a user may
prefer to re-organise the objectives so that they are more closely aligned with, for example, their chosen
system architecture, their development processes or their organisational structures.

However, it is expected that users of this document would provide evidence to demonstrate that the
objectives have been satisfied. They may also provide evidence-based, structured arguments to justify
why a particular objective need not be considered for their particular application. Similarly, users may also
argue why a particular objective needs only to be covered at a superficial level.

1.3 Document Status

This document was authored by the Safety of Autonomous Systems Working Group (SASWG), which is
convened under the auspices of the Safety Critical Systems Club (SCSC). The first version of the document,
released in January 2019, only considered the computation-level framework. The current version, released
in January 2020, represents the first time that all three framework levels have been addressed.

The identified objectives (and associated frameworks) have been developed mainly from a theoretical
basis. However, efforts have been made to check their validity. For example: where possible, the adopted
frameworks have been compared against possible alternatives; the objectives have also been compared
against relevant peer-reviewed documents. In addition, this document's contents have been reviewed
from the context of the Organisation for Economic Co-operation and Development (OECD) Principles on
Al". These collected activities provide some confidence that the objectives are suitable for their intended
use.

Despite those activities, it should be noted that, as yet, the objectives have not been subjected to practical
use across an entire AS. In short, the objectives have not been “proven through use”. It is expected that
the objectives and, especially, the associated example approaches will change as experience is gained.
Consequently, feedback from the safety, AS, Al and ML communities is encouraged. This can be provided
by emailing the address noted on the inner front cover.

L https://www.oecd.org/going-digital/ai/principles/.

INTRODUCTION

1

INTRODUCTION

1

1.4 Terminology

The SASWG has deliberately avoided defining the term autonomous, preferring to work from examples and
assuming that, generally speaking, it is easy to identify whether a specific system is autonomous, even
though a general definition is difficult to achieve. The desire to avoid protracted and largely uninformative
debates about definitions extends across much of the SASWG's work. Nevertheless, it is helpful to provide
outline descriptions for some terms used in this document. Specifically:

e A platform delivers an end user capability during normal operation. It is, typically speaking, an
individual vehicle rather than, for example, a swarm of cooperating vehicles or the control logic for
vehicle navigation. The same general level applies to autonomous systems that are not vehicle-based:
for example, a platform to support medical diagnosis may include patient records, a scanner and
communication networks, as well as an autonomous decision-making algorithm. A key concept is
that the platform can, and generally would, include elements that are developed using traditional
approaches.

e An autonomous system can be viewed from multiple levels of abstraction. For example, it could
be viewed as a platform (e.g., a self-driving car) or as a computation with an associated autonomy
architecture (e.g., a component that provides the locations of pedestrians in an image). Depending
on the domain, either use may be common. This is why, within this document, the highest-level
framework is titled “platform” rather than “system”. Nevertheless, in many cases the terms “platform”
and “system” may be viewed as interchangeable.

e An algorithm is a well-defined procedure that implements, possibly indirectly, aspects of a system'’s
behaviour. For the purposes of this document, generally speaking, an algorithm for autonomous
aspects would be a single implementation developed using an ML technique, for example: a Neural
Network (NN); a Support Vector Machine (SVM); or a random forest. A platform may include multiple
algorithms.

e A computation is the physical embodiment of an algorithm. In some contexts, the words are largely
interchangeable. A key distinction is that computation includes considerations related to supporting
software and to computational hardware; neither of these is included within “algorithm”.

e A platform, or algorithm, is in operational use when it is being used for its intended purpose; that
is, when its outputs have real-world consequences. Note that it is possible for learning to continue
whilst a platform, or algorithm, is in operational use.

e A data set is used to train, test and verify an algorithm using ML techniques. The part of the data
set used to develop the algorithm is referred to as training data; the part used for testing is test data.
Both training data and test data are used by the development team. A separate, possibly overlapping,
data set, termed verification data may be used for assurance, independent of that team. Note that
these definitions apply when the data is used as part of a pre-deployment training and development
phase, as well as when there is continual learning.

e The data set is made up of a number of samples (e.g., images from a camera). Each sample comprises
a number of features (e.g., the colour of a given pixel in that scene). The collection of features defines
the input domain. During operational use the algorithm is provided with inputs.

e Providing a computation with an input (or, during development, a sample) results in an output. This
description includes cases where multiple samples as used (e.g., streaming data) and cases where
the output is multi-dimensional (e.g., a vector of class-membership probabilities).

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

1.5 Document Structure

The remainder of this document is structured as follows:

Section 2 describes the computation-level framework.

Section 3 discusses computation-level objectives.

Section 4 describes the autonomy architecture-level framework.
Section 5 discusses autonomy architecture-level objectives.
Section 6 describes the platform-level framework.

Section 7 discusses platform-level objectives.

Section 8 contains a summary list of objectives.

Appendix A provides justification for the computation-level framework.

Appendix B provides additional justification (beyond that which is included in Section 3) for the
computation-level objectives.

Appendix C provides justification for the platform-level framework.

Appendix D provides a top-level mapping between the argument structure in the Assuring Autonomy
International Programme (AAIP) Body Of Knowledge (BOK) and the objectives listed in this document.
This provides additional justification for all three frameworks adopted by the SASWG.

Appendix E provides a top-level mapping between the key section headings in UL4600, “The Standard
for Safety for the Evaluation of Autonomous Products”, and the contents of this document (either
objectives or projections). As with the previous appendix, this provides additional justification for this
document’s contents.

Appendix F provides an illustration of how this document's objectives support the OECD Principles
on Al

Appendix G provides a list of known issues, which will be resolved in future versions.
Appendix H provides a list of abbreviations.
Appendix | provides a list of references.

Appendix J provides a list of contributors.

INTRODUCTION

1

—— T INTRODUCTION

yue|q Ajleuonuaiul st aded siyl

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

2 Computation-Level Framework: Description

This section describes the framework adopted by the SASWG for computation-level considerations, which
is based on the one presented by Faria in [30]. The justification for adopting this framework is provided in
Appendix A.

The framework consists of five projections, each of which views the computation’s properties along a
different axis. The projections are not intended to be strictly independent: they provide different ways
of viewing the computation, in order to elicit associated objectives. To facilitate discussion, the projections
have been arranged in an approximate hierarchical order, working from more abstract to more concrete
considerations, specifically: experience; task; algorithm; software; hardware. Each of these projections is
considered, in turn, in the following subsections. The section concludes with a brief tabular summary of
the entire framework.

2.1 Projections

2.1.1 Experience

This projection focuses on the data set used to train and develop the algorithm. When relevant, this also
includes training that continues during operational use, based on the data set provided by the system’s
experiences.

It includes consideration of how the data was generated, or collected, as well as the use of pre-existing data
sets and the nature of any preprocessing activities (e.g., to synthesise missing values). It also encompasses
whether the training data is suitably representative of data that is observed (or expected to be observed)
during operational use; this includes consideration of the environment(s) associated with the training data.
The type of configuration management applied to the data is also relevant within this projection.

2.1.2 Task

This projection focuses on the performance of the computation. As such, it is mainly concerned with
requirements, that is, what the system requires from the algorithm.

It includes the metrics that are used to measure performance, as well as the performance threshold
required to allow the algorithm to be used safely within a system (which may depend on the intended
operating environment). ltems typically used to measure the performance of ML-based computations, like
accuracy, precision and recall are relevant here although, by themselves, they may not be sufficient. There
may, for example, be a need to provide confidence in an algorithm’s output. Additionally, there may be a
need to demonstrate some non-functional characteristics (e.g., an output will always be provided within a
given time).

2.1.3 Algorithm

This projection focuses on the choice of algorithm, for example, whether an NN, a SVM, a random forest,
or some other approach is used. As such, it is mainly concerned with providing justification for decisions
relating to the chosen implementation.

It includes the choice of any hyper-parameters associated with the algorithm: for example, the structure

2 COMPUTATION-LEVEL FRAMEWORK: DESCRIPTION

of, and activation function used within, a NN, or the number of trees in a random forest. It also includes
decisions related to the training process: for example, the number of training epochs that are used, or the
stopping condition that is implemented.

2.1.4 Software

This projection focuses on the software instantiation of the algorithm; that is, the translation of a design,
mathematics or pseudo-code into a form that can be directly executed on computational hardware. More
specifically, this projection is concerned with whether the implementation is a valid representation of the
algorithm.

The projection includes the choice of programming language. It also includes the choice of software
libraries used to support the development and operational implementation of an algorithm. Tools used
to support software development and verification are also captured in this projection.

The choice of, for example, programming language and supporting tools may be different during training
than in operational use. Hence, it is convenient to consider this projection twice: once from a training and
development perspective and once from the perspective of operational use of the algorithm.

Many of the considerations relevant for this projection are adequately addressed by existing software safety
standards.

2.1.5 Hardware

This projection focuses on computational hardware. It includes consideration of the type of hardware,
for example: Central Processing Unit (CPU); Graphical Processing Unit (GPU); Tensor Processing Unit (TPU);
Field Programmable Gate Array (FPGA). It also includes whether this hardware is dedicated to one algorithm
or whether it is used to support multiple algorithms (or multiple system features, including non-Al ones).

As with the previous projection, it is convenient to consider the hardware projection from both
development and operational use perspectives.

Like the previous projection, many of the considerations relevant for this projection are adequately
addressed by existing (computational) hardware safety standards.

2.2 Summary

Table 2 provides a brief summary of the five projections in the computation-level framework that has been
adopted by the SASWG.

Table 2: Summary of Projections Within the Computation-Level

Framework
Projection ‘ Outline ‘
. Focused on the data that is available to train (or develop)
Experience :
the algorithm
Task Focused on the performance of the implemented
algorithm; emphasizes requirements

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Projection Outline

, Focused on the type of algorithm that is used;

Algorithm o .

emphasizes implementation

Focused on the software used to develop the algorithm
Software .)

and, separately, support its operational use

Focused on the computational hardware that is used,
Hardware .

both for development and for operational use

2 COMPUTATION-LEVEL FRAMEWORK: DESCRIPTION

2 COMPUTATION-LEVEL FRAMEWORK: DESCRIPTION

IOL

yue|q Ajleuonuaiul st aded siyl

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

3 Computation-Level Framework: Objectives

This section lists the objectives associated with each projection of the computation-level framework.
Supporting justification for these objectives is provided in Appendix B.

3.1 Experience

The experience projection is focused on the training data that is used to develop the algorithm. This data
is crucially important because it encodes the requirements that the algorithm has to satisfy. Unfortunately,
this encoding is implicit, in the form of the desired input-output relationship, so it cannot be directly
examined. Hence, assurance that the algorithm's behaviour will be appropriate has to include aspects
relating to the data.

There are four objectives associated with this projection.

COM1-1: Data is acquired and controlled appropriately.

Discussion: Data is obviously a very important part of an ML approach. Consequently, any assurance
argument that addresses the ML-produced algorithm also has to address the data used to support its
development. More particularly, if the source of the training, test and verification data cannot be adequately
defined, or if this source is not appropriate for the intended use, then it will be difficult to produce a
compelling assurance argument.

Examples: The first part of this objective relates to the way the data is acquired. For example, this could
involve observing a natural process over which little control can be applied, or it could involve controlled
trials; alternatively, it could involve the use of a synthetic environment from which training data is generated.

Ideally, the data would be acquired in a controlled manner using a documented process, which takes
account of the prevailing environmental features (e.g., weather, system architecture) during collection.
Changes to the acquisition method would be formally managed. Also, any software used to support data
acquisition would be shown to be correct. In some ways, these considerations mirror those related to the
use of Product Service History (PSH) in the aviation domain [16].

If a complete data set is acquired from an external party then care should be taken to ensure that it has
not been subject to “Data Poisoning”; for example, the addition of a small number of maliciously crafted
samples can create a backdoor [17]. The same techniques used to confirm the authenticity of information
downloaded from the Internet (e.g., checksums) may be helpful here. When using data from an external
party, care also needs to be taken to ensure it is not accidentally flawed, for example, because of translation
issues (e.g, through different use of common terms like “speed”).

Regardless of how the data is acquired there is also a need to analyse and quantify uncertainty. This
may arise, for example, from sensor noise when measuring samples. Another potential source is labelling
uncertainty: for example, should a person walking next to a bicycle be classified as a pedestrian or a cyclist?
This can be an issue if labelling is conducted by a team of humans [22].

The second part of this objective relates to control of the data. More specifically, the data would be
expected to be subject to some form of configuration management process, which protects it from
accidental or unauthorised changes. Standard configuration management tools are likely to be suitable
for this purpose, although the properties of training data may mean they are not optimal.

I

12

3 COMPUTATION-LEVEL FRAMEWORK: OBJECTIVES

Note that algorithms featuring online learning will continue to receive training data during operational use.
This indicates there may be a need to include safeguards so that only suitable data is used for learning
purposes. These could, for example, check that inputs are sufficiently similar to those that have been seen
before, either because they were included in the original, pre-deployment training data or because they
have previously been observed in operational use; these two conditions allow gradual expansion of the
range of suitable data as the algorithm learns. The notion of “sufficient similarity” bears some relation to
the concept of distribution shift? [61], but here it involves comparing a single sample with a distribution,
rather than the more typical case of comparing two distributions.

COM1-2: Pre-processing methods do not introduce errors.

Discussion: Just because data has been collected in a controlled manner (as indicated by Objective
COM1-1), it does not necessarily follow that the data is suitable for training an algorithm. In many ML
applications, there is a step between acquiring data and having data in a form suitable for algorithm
development. This step generally involves pre-processing the data. It could include, for example, detecting
missing data items and replacing them with suitable surrogate values; it could also include normalising
features. Since pre-processing directly affects the data used to develop the algorithm, any errors in
pre-processing could undermine a computation-level assurance argument.

Pre-processing is likely to occur during operational use as well. For example, raw sensor readings are
likely to be processed in some way before being provided as inputs to an algorithm. Although it is
important, this type of pre-processing is considered to be an autonomy architecture-level issue, rather
than a computation-level issue.

Examples: Typically, pre-processing would be expected to be achieved using traditional types of software.
This means that the approaches used to provide assurance for traditional software are also applicable here
(e.g., [69]). In addition, pre-processing software bears some similarities to tools used to support traditional
software development. One way of achieving confidence that those tools do not introduce errors is the
notion of Tool Qualification. Hence, concepts like Tool Qualification Levels (TQLs) [70] are also relevant. In
that specific context, pre-processing software can be considered as a tool that can introduce errors into
the operational software (rather than a tool that can only fail to detect an error).

The approaches used for traditional software should ensure that pre-processing software is under
appropriate control, including archive retrieval, if necessary. Similarly, the control measures (discussed
under Objective COM1-1) should ensure that the “raw” (i.e., not pre-processed) data remains available,
should this be required.

COM1-3: Data captures the required algorithm behaviour.

Discussion: Even if the data is suitable for training an algorithm, it does not necessarily follow that it is
suitable for training a specific algorithm. Fundamentally, training data encodes the requirements that the
algorithm'’s behaviour is intended to satisfy, so a data set suitable for training an algorithm to recognise
road signs will not be suitable for training an algorithm to recognise human emotions. Unfortunately, the
data does not encode the requirements in an explicit manner. Consequently, these requirements cannot
be directly reviewed by stakeholders or algorithm developers. This means an argument needs to be made
as to why a particular set of data is appropriate for a specific algorithmic behaviour.

2 Distribution shift is also considered in Objective COM1-4.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Examples: Exploratory data analysis [81] would be a sensible first step in understanding the properties of
a data set and, consequently, its applicability to a particular algorithm. This could include plotting marginal
distributions of each feature, calculating two-way correlation coefficients and producing pairwise scatter
plots for different pairs of features [44]. It can also be helpful to identify typical and outlier samples
(possibly on a class-by-class basis, for classification problems) [7]. The concept of outlier samples can
also be extended to include rare situations, the presence (or absence) of which is likely to be informative.
The insights gained from this work can inform discussions involving domain experts and ML specialists, as
well as supporting an assurance argument.

In essence, part of this objective is about understanding the relationship between the training data and the
algorithm'’s application domain. This could be informed by previous uses of the data [34]. In some cases,
the relationship can be quite subtle. Consider, for example, an algorithm intended to recognise British
traffic signs. Despite the restriction of the algorithm’s domain to British traffic signs it may be appropriate
to train it on British, Continental European, and worldwide, traffic signs. Along with apparent economic
benefits (e.g., if the same algorithm could subsequently be employed in different markets), this approach
could increase algorithm robustness.

A related, but more extreme, version of this general approach is transfer learning, where a pre-trained
network is specialised, or fine-tuned, for a specific task. This approach is often used for image recognition
tasks. In this case, the nature of the pre-trained network would be expected to be discussed in any
assurance argument. This discussion would also be expected to address the possibility of the pre-trained
network introducing a backdoor, or otherwise undesirable, behaviour [371].

COM1-4: Adverse effects arising from distribution shift are protected against.

Discussion: Distribution shift occurs when the operational inputs provided to the algorithm differ, in a
statistically meaningful sense, from the samples used during development. This is important because, in
addition to encoding requirements, training data also captures information relating to the domain in which
the algorithm can safely be used.

Examples: There are a number of different types of distribution shift, including cases where the inputs
change and cases where the input-output relationship changes [61]. The possibility of each type of
distribution shift would be expected to be considered and appropriate protection provided. Any detection
of distribution shift is statistical in nature. This means that a balance needs to be struck between the
possibility of false alarms (i.e., false positives) and the possibility of false negatives; this balance may be a
hard wired feature, or it may be tuneable.

Since the algorithm is meant to generalise the input-output mapping of the training data, there are
dangers in taking too rigid a statistical approach. More specifically, the inputs seen by the algorithm during
operational use are not expected to be precisely the same as those used during training. Consequently,
the algorithm may be better suited to providing operational predictions for inputs that lie inside (i.e., within
the convex hull of) the training data than to providing predictions for inputs that lie outside the training
data.

There are other reasons why a naive comparison of training and operational distributions is likely to
be inappropriate. For example, to increase robustness the training data may be supplemented with
adversarial examples [36]. Additionally, the frequency of “rare but important” examples may be artificially
increased within the training data by generating synthetic data.

Also note that, in some cases, data can be statistically similar, but semantically different. Consider a

3 COMPUTATION-LEVEL FRAMEWORK: OBJECTIVES

13

14

3 COMPUTATION-LEVEL FRAMEWORK: OBJECTIVES

distribution with zero mean, that is symmetric about this value; swapping the sign on all samples would
produce a data set that was statistically similar, but semantically different. This possibility should be
considered and, if appropriate, protected against.

There is also the possibility that data is semantically similar but, statistically different. Obviously, this
depends on the specific nature of the statistical test that is being used. However, there are examples
of statistical differences being found between training and test data, but these differences having no
discernible effect on algorithm performance [66].

From a computation-level perspective, the focus is on detecting distribution shift. Appropriate responses
are best enacted at other framework levels (see, for example, Objective ARC1-2 from the autonomy
architecture level).

3.2 Task

This projection is focused on the performance of the algorithm; that is, whether it can be safely used
within the intended system context. As with traditional safety-related software, requirements would be
expected to be passed down from the system level. Whilst there are some similarities, there are also some
differences between evidence that traditional software satisfies its requirements and the corresponding
evidence for algorithms developed using ML techniques. This evidence is, obviously, an important
component of an assurance argument.

There are seven objectives associated with this projection.

COM2-1: Functional requirements imposed on the algorithm are defined and satisfied.

Discussion: Ultimately, the algorithm is expected to be used as part of a system. In order to perform as
part of that system, the algorithm will have to satisfy a number of functional requirements. For example,
rather than returning a single prediction, it could be required to return a probability vector that expresses
the likelihood of an input belonging to each of a collection of classes. Alternatively, or additionally, it may
be required to provide some measure of confidence in its prediction.

Examples: Traditional software testing techniques may be helpful in demonstrating some of an algorithm’s
functional properties. Depending on the criticality of the algorithm, these may involve formal review of test
cases and tests being independently conducted (and witnessed).

In ML approaches, functional requirements are not systematically decomposed into low-level requirements
that can be unambiguously coded against. This means that traditional software testing techniques should
be supplemented by other types of testing. These could include the types of test that are more traditionally
seen at the system level.

Note that the performance of the algorithm is considered in Objective COM2-3.

COM2-2: Non-functional requirements imposed on the algorithm are defined and
satisfied.

Discussion: The algorithm will be embodied in a wider system. This means it will have to satisfy some
non-functional requirements. For example, it may be required to produce an answer within a given time.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Examples: Similar to Objective COM2-1, traditional software testing techniques may be helpful in
demonstrating some of an algorithm’'s non-functional properties, but they should be supplemented by
other forms of testing. This could be informed by a set of standard scenarios [18]. The choice of scenarios
would be expected to be described and justified as part of the computation’s assurance argument. Care
needs to be taken to ensure that the selection of scenarios is suitable for the intended use. However,
experience from other areas suggests this may be possible: for example, a standard set of situations is
used when testing an aircraft flight simulator [28]. The notion of situation coverage could also inform this
decision [3].

This will depend, however, on the technologies in use. AS often use novel technology, and it may be that
there are no established techniques for measuring a given non-functional property.

A key non-functional requirement for traditional safety-related software is execution time. Consequently,
significant effort is often expended measuring (or, in some cases, calculating) the Worst Case Execution
Time (WCET). Many algorithms developed using ML techniques will apply exactly the same computational
process, regardless of the input; this is the case for NNs, for example. This means that establishing WCET
for these algorithms may be no worse than is the case for traditional software.

There are, however, uses of Al for which this is unlikely to be the case; route planning is a possible
example. In such circumstances, WCET estimates would be expected to be guided by both knowledge
of the algorithm and the likely ways in which it will be used.

COM2-3: Algorithm performance is measured objectively.

Discussion: Fundamentally, this objective is about how performance is measured. The question of what
level of performance is required is, essentially, a system-level concern. The way that performance is
measured should directly relate to the algorithm's requirements, passed down from the system level.

Typically, an algorithm would be expected to achieve at least a minimum level of performance. For
classification algorithms, this often involves measuring properties like precision, recall or accuracy. These
are measured using a validation data set, which is withheld from the training process for this purpose.
Note, however, that this involves a statistical measure of correctness.

Examples: Although they can be useful, there are limits to what can be gained from measuring properties
like precision, recall and accuracy. For example, the existence of adversarial inputs (i.e., inputs that are
very close to a sample in the training data, but which are confidently predicted as belonging to a different
class) for well-performing algorithms (e.g., [78]) indicates these measures are unlikely to capture all relevant
features of algorithm behaviour.

Special care needs to be taken if the data set is imbalanced; for example, if in a classification problem a
large proportion of the data falls within a single class. In such cases poorly chosen performance measures
can be dominated by the algorithm’s performance on the large class [39].

In some cases, it may be appropriate, or necessary, to consider algorithm fairness. This could require
changes to the training data (pre-processing), alterations to the model training approach (in-processing) or
changes to baseline model outputs (post-processing). A variety of algorithms have been developed to help
detect and protect against unintentional bias [11].

3 COMPUTATION-LEVEL FRAMEWORK: OBJECTIVES

15

16

3 COMPUTATION-LEVEL FRAMEWORK: OBJECTIVES

COM2-4: Performance boundaries are established and complied with.

Discussion: Depending on the nature of the algorithm'’s input domain, there may be some combinations of
features that do not represent a valid input. Consider, for example, the classic Iris data set that is available
from the University of California, Irvine (UCI) Machine Learning Repository [24]. This relates information
on specific Iris features (e.g., petal sizes) to the associated species of plant. In this case, there is some
relationship between the length and width of an Iris petal. Hence, even though it would fall inside an
algorithm'’s input domain, it would be unreasonable to expect the algorithm to predict Iris species for a
very wide, very short petal (since this combination does not occur in nature).

More generally, as noted above (in the experience projection, subsection 3.1), the training, test and
verification data encodes information about the region of applicability for the algorithm. Since this data
covers the scope over which the algorithm has been developed and tested, this also establishes boundaries
(albeit fuzzy ones) within which the measured performance may, in some sense, be expected.

Note that the question of what response should be provided if the algorithm receives an invalid input is
best addressed at the system level. If appropriate, this response could also be extended to realistic, but
very unlikely, points in the input domain.

Examples: The approach to this objective is similar to that of Objective COM1-4. However, the two
objectives differ in that COM1-4 adopts a more theoretical, data-focused approach, whereas this objective
takes greater consideration of the wider system and application domain. Ensuring that the platform can
tolerate operational inputs that are outside the algorithm’s performance boundary is achieved via Objective
ARC1-2 in the autonomy architecture-level framework.

COM2-5: The algorithm is verified with an appropriate level of coverage.

Discussion: Branch coverage, statement coverage and Modified Condition / Decision Coverage (MC/DC)
[19] are well established measures of test coverage for traditional software [69]. These measures, and
other related ones, allow judgements to be made regarding the sufficiency of a test set (e.g., one based on
the software requirements). More colloquially, in some sense they allow an informed decision to be made
that sufficient testing has been achieved.

From the perspective of an algorithm developed using ML approaches there is a similar need to provide
objective evidence that a sufficient level of testing has been completed.

Examples: Algorithm-related coverage measures would be expected to consider two perspectives: one
focused on the input domain; and one focused on the internal features of the algorithm.

Approaches that address the former perspective (i.e., the input domain) are likely to be common across
all ML approaches. These may consider the input domain it its raw form (i.e., as measured by system-level
sensors); alternatively, they may consider a simpler representation of this data, for example, one developed
using Principal Component Analysis (PCA). In some cases, they may also involve approach-specific
characteristics, for example, considering the feature space represented by a particular layer in a neural
network. However, since this space is dependent on the training data, by themselves these types of
consideration would not be sufficient. One option may be to consider characteristic sets that categorise
input scenarios (e.g., by weather, road type, traffic level) and then establish a form of combinatorial
coverage across these sets [18].

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Approaches that address the latter perspective (i.e., algorithm internal features) are likely to be specific to a
particular type of algorithm, or family of algorithms. For example, in the case of random forests, a measure
of how many branches are covered in each tree by the verification data may be informative. Understanding
how this value varies across individual trees in the forest (and, especially, the minimum value) is also likely
to be informative. In the case of neural networks, measures based on neuron activations are likely to be
helpful [77], especially those based on activations of combinations of (rather than individual) neurons.

Another potentially useful approach to establishing test coverage is that of negation. Consider, for example,
a pedestrian detection function. This could be tested with images that: should be classified as containing
pedestrians; might be classified as containing pedestrians; should definitely not be classified as containing
pedestrians. More generally, the latter class (which can be viewed as negating the requirement) can be an
easy way of generating powerful test cases.

COM2-6: The test environment is appropriate.

Discussion: Since test results will form part of the assurance argument, there must be confidence in
the test environment that produced these results. This environment includes physical assets, software
code and test cases. In addition, the test environment would be expected to be under configuration
management, so that it could not be arbitrarily changed.

Examples: Much of this objective would be satisfied by traditional approaches to the development of
safety-critical, or safety-related, software. However, it is possible, perhaps likely, that the test environment
will include some representation of the real world, for example, because the test environment includes
a representation of the system within which the algorithm is embodied or because it includes a
representation of the real world process that generated the training data. In either case, there is a
need to validate the representation of the real world entity, or process. This could be achieved using
standard approaches for simulation validation [73], potentially supported by a standard set of scenarios
(as discussed in Objective COM2-2).

COM2-7: Each algorithm variant is tested appropriately.

Discussion: For the purposes of this document, it is helpful to distinguish between instantiations, which
may vyield different behaviour, and variants, which are intended to yield different behaviour. For example,
different algorithm instantiations would be expected in autonomous vehicles operating in the United States
of America, whilst different variants would be needed to obey state-level driving laws. More generally,
algorithm variants can facilitate adherence to local legislation, or local practices.

Examples: The question of how much testing of one variant can be read across into another is, inevitably,
situation specific. Nevertheless, the use of algorithm variants has some similarity to the notion of software
product line development [64].

It is also related to the level of confidence that can be gained from, for example, a pre-trained network
that has been subject to some testing. If the testing of the pre-trained network is closely related to the
intended operational domain then it may be possible to gain considerable confidence. Conversely, if there
are significant differences between the earlier testing and the intended domain then little confidence may
be gained from earlier testing.

Similar considerations also apply to cases where analysis of operational inputs is used to create new,
updated algorithm variants. Whilst some confidence may be gained from the testing of earlier variants,

3 COMPUTATION-LEVEL FRAMEWORK: OBJECTIVES

17

18

3 COMPUTATION-LEVEL FRAMEWORK: OBJECTIVES

this will inevitably degrade as more variants are produced. It may be necessary to have a minimal set of
test cases that are always run, to check that an update (to produce a new variant) has not undermined any
critical properties of the algorithm. This has similarities to the notion of regression testing for traditional
software.

3.3 Algorithm

Different types of algorithm have different strengths and weaknesses. Hence, the type of algorithm that is
used has to be suitable for the task in hand. In particular, the choice of algorithm should be based on the
requirements it has to satisfy and the application domain; it should not be an arbitrary choice, nor should
it be based solely on developer familiarity.

There are four objectives associated with this projection.

COM3-1: An appropriate algorithm type is used.

Discussion: A variety of algorithm types are available, including NNs, random forests, SVMs and
Reinforcement Learning (RL). There are further divisions within each type. For example, the NN family
includes: Deep Neural Networks (DNNs), which feature hidden layers of neurons; Recurrent Neural
Networks (RNNs), which have loops within the network structure; and Convolutional Neural Networks
(CNNs), which have features designed for image classification.

In most cases, the ML process that produces these algorithms is controlled by hyper-parameters. These
may include, for example: the way the available data is split between development and verification activities;
the number of layers, and the number of neurons in each layer, of a NN; the neuron activation function;
and dropout rates [76].

Examples: Any computation-level assurance argument would be expected to include justification
for the chosen algorithm and, also, any hyper-parameters that were used. This could include
appropriately-referenced theoretical arguments, for example, arguing that the available literature
demonstrates the utility of CNNs in image classification tasks [52].

Empirical arguments are also likely to be required; for example, the performance of a number of different
algorithms could be investigated in order to justify the choice of the final algorithm. Likewise, a structured
investigation of the effect of different hyper-parameter settings would be expected.

COM3-2: Typical errors are identified and protected against.

Discussion: Broadly speaking, there are four different places where errors can arise: within the training (or
verification) data; within the way individual steps are composed to form an algorithm; within a supporting
framework; and within the execution environment [88]. These approximately map to the experience,
algorithm, software and hardware projections, respectively. Consequently, this objective is concerned with
issues relating to ML approaches in general, the class of algorithm and hyper-parameter choices.

Examples: Comparatively, there is much less experience as to what typical errors may be in algorithms
trained using ML techniques than for traditional safety-related software. Nevertheless, there are some
indications of things that should be avoided [40]. One example is over-fitting, where the algorithm learns
the specific data rather than the generic relationship. Another is data leakage, where the algorithm has

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

access to information that should not legitimately be available. Adversarial examples may also be a typical
error for large-dimensional data sets [35]. Another typical error may be the under-representation of rare
events in the training data [85].

Whilst some indicative typical errors are beginning to emerge, it is less clear how these errors can be
detected and corrected. In the specific case of over-fitting, it appears that groups of neurons that fire for a
single class may be indicative of memorising the specific training data, rather than generalisation [60].

Although supporting frameworks can simplify the use of ML approaches, their nature can make it difficult
to detect errors. For example, many learning processes have stochastic features; this means that bugs are
hard to reproduce and, furthermore, success criteria are statistical in nature (which means incorrect code
can appear to be working) [88].

COM3-3: The algorithm’s behaviour is explainable.

Discussion: Algorithms developed using ML approaches do not feature the formal, traceable, hierarchical
decomposition of requirements that is typical of traditional safety-related software [8]. This lack of
traceable decomposition contributes to a lack of understanding regarding how a specific piece of algorithm
behaviour contributes to the final output. Expressed another way, it is easy to see what an algorithm is
doing; it may be less easy to see why.

Examples: There are two main perspectives that should be considered when thinking about explaining
behaviour [38]:

e Explaining a single output from an algorithm. A number of approaches have been proposed,
including: training simplified (human-understandable) models to represent the algorithm’s behaviour
for the input of interest [67]; and providing visual representations [43].

e Explaining algorithm behaviour in general. There is apparently less work in this area. It is notable
that behaviour in general cannot be explained by looking at behaviour in even a large number of
individual cases: the non-linear nature of many ML-developed algorithms means it is not appropriate
to extrapolate from the specific to the general.

There is, in general, a tension between explainability and performance. The objective of explainable
behaviour suggests a preference for low-complexity approaches but, in isolation, these approaches may
not be able to achieve the required level of performance. Combining several algorithms, either in series or
in parallel, may be a suitable way forward.

Depending on the way the algorithm is used, the need to explain the algorithm's behaviour, which is
an important part of any computation-level assurance argument, may have to be balanced against the
possible effects an explanation may have. Consider, for example, a medical diagnosis system that uses
doctor’s notes as one of many inputs. If the doctors were informed that using a particular word (e.g,,
“unusual”) was a significant trigger for a particular decision from the algorithm, this may change the way
they write their notes (which would be a form of distribution shift, so Objective COM1-4 is relevant). Whilst
this is a platform-level consideration, it is informed by computation-level knowledge.

Although the precise details are outside the scope of this document, it should be noted there may be legal

3 COMPUTATION-LEVEL FRAMEWORK: OBJECTIVES

19

20

3 COMPUTATION-LEVEL FRAMEWORK: OBJECTIVES

(or ethical) factors that affect the extent to which an algorithm’s behaviour has to be explained [83].

COM3-4; Post-incident analysis is supported.

Discussion: The process of air accident investigation is, arguably, one of the main reasons that air travel is
comparatively safe. Given the relative immaturity of autonomous systems, analysis of incidents (including
those that do not result in an accident) is likely to make a significant contribution to safety in this field.
Consequently, the algorithm is expected to support post-incident analysis.

Examples: This objective is related to Objective COM3-3 in that explanation of a single result (or a small
number of results) from the algorithm will be an important part of the post-incident analysis. However,
sufficient information needs to be recorded to allow the algorithm’s behaviour to be reconstructed after
the incident. This may involve storing internal state information, including any data used to support
non-deterministic choices within the algorithm.

Some aspects of this (e.g., provision of sufficient storage space) are autonomy architecture-level or
platform-level issues. Other aspects may affect both the platform and the algorithm: for example, a
requirement to support post-incident analysis for anything that has occurred sometime in the last 30 days
may drive a different algorithm design to a requirement to support investigations over a 30-second period.

A computation-level assurance argument would be expected to demonstrate that post-incident analysis
can be conducted. One way this may be achieved is by treating discoveries during development and testing
as pseudo-incidents and confirming that sufficient information was recorded to support post-incident
analysis.

3.4 Software

Any algorithm will rely on software. Consequently, software needs to be considered in a computation-level
assurance argument. The software associated with development of the algorithm is likely to be different
to the software employed during operational use. Consequently, it is helpful to consider objectives in the
software projection from both development and operational use perspectives.

There are two objectives associated with this projection.

COM4-1: The software is developed and maintained using appropriate standards.

Discussion: Even though supporting libraries, or tool kits, are available, at some point an algorithm will
almost certainly rely on some traditional-style software (e.g., because this is what the supporting library is
implemented in). Faults in this software have the potential to undermine an assurance argument.

Examples: Much of this objective is likely to be addressed through the use of an existing standard
for safety-critical software development (e.g., [69]). This should help prevent typical errors (e.g., integer
overflow) from being introduced. There are, however, a number of areas where an existing standard may
not be straightforward to apply.

Firstly, generally speaking, supporting libraries are not developed to such rigorous standards. There are
several potential approaches to this challenge. For example, it may be possible to provide additional
evidence that relates to the portion of the framework that is actually used. Alternatively, it may be possible

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

to compare the results from different (independently developed) libraries [75]. It may also be possible
to re-implement the ML algorithm from scratch (e.g., use a library to investigate multiple algorithms,
then re-implement only the chosen one). Whatever approach is adopted, a computation-level assurance
argument would be expected to provide a justification as to why any supporting framework is suitable.

Secondly, the pervasive nature of the framework means it is inappropriate to treat it as Software of
Uncertain Pedigree (SOUP) [49]. In particular, it is not possible to put the framework in a bounded,
protected environment and carefully monitor the inputs and outputs to that environment.

Thirdly, rather than developing an algorithm from scratch, significant savings might be achieved by starting
with a pre-trained model. However, there is a possibility that these models could include backdoors that
cause the model to exhibit inappropriate behaviour in very specific circumstances [37]. The nature of
these backdoors means it is unlikely that they will be discovered simply by running tests through the
model. Consequently, any use of pre-trained models would be expected to be explicitly justified in any
computation-level assurance argument. For example, pre-trained models should be obtained from trusted
sources, using a distribution mechanism that provides strong guarantees on integrity.

COM4-2: Software misbehaviour does not result in incorrect outputs from the algorithm.

Discussion: Generally speaking, most safety-related systems that use software include protections against
software failures or, equivalently, cases where the software does not behave as expected. This prevents
errors propagating through the system and allows restorative measures to be implemented (e.g., restarting
an application). The key issue is that software misbehaviour is detected and responded to [65].

Examples: Algorithms developed using ML approaches do not fail (or misbehave) in the same way as
traditional software. In particular, it is not apparent that all failures will be readily detectable from outside
the algorithm. Hence, there may be benefit in including some form of Built-In Test (BIT) in the algorithm,
which provides confidence that it is operating as expected [74].

Some algorithms may provide a measure of confidence associated with their output. That is, rather than
simply classifying an image as a “cat”, the information provided may be a 75% confidence the image is a
“cat”, a 13% confidence the image is a “dog”, and so on. Whilst it may be helpful in some circumstances,
this may not be sufficient to fully address this objective, not least because adversarial examples show NN
can be confident in their output yet still wrong [78].

3.5 Hardware

In order to function, any algorithm will rely on computational hardware. Consequently, hardware needs to
be considered in a computation-level assurance argument. The hardware associated with development of
the algorithm is likely to be different to the hardware employed during operational use. Consequently, it
is helpful to consider objectives in the hardware projection from both development and operational use
perspectives.

There are two objectives associated with this projection.

COM5-1: Appropriate computational hardware standards are employed.

Discussion: Similar to Objective COM4-1, ultimately, any algorithm will run on some form of computational

3 COMPUTATION-LEVEL FRAMEWORK: OBJECTIVES

3 COMPUTATION-LEVEL FRAMEWORK: OBJECTIVES

22

hardware. This hardware needs to be considered in a computation-level assurance argument.

Examples: Again, similar to Objective COM4-1, much of this objective may be addressed by existing
standards (e.g., [68]). In some cases this may be straightforward; in others, the specialist, complex nature
of the hardware may pose challenges. For example, this hardware could include GPUs or TPUs, used for
massively parallel calculations; alternatively, it may involve a complex System-on-Chip (SoC), featuring a
combination of processor cores, GPUs (or TPUs) and bespoke components (e.g., video coders / decoders).

If novel, or complex, hardware is involved then it may be necessary to understand the extent to which the
behaviour of this hardware is predictable. These considerations could be informed by recent experience
with multi-core processors [29].

COM5-2: Hardware misbehaviour does not result in incorrect outputs from the algorithm.

Discussion: There are several reasons why computational hardware may not behave as expected;
Single Event Upsets (SEUs) are one example. Another aspect, specific to algorithms developed using
ML techniques, is differences in development hardware and operational hardware (which may mean the
operational performance differs from what would be expected).

Examples: Any computation-level assurance argument would be expected to consider the possibility
of hardware misbehaviour and offer protections against it. This includes SEUs. It also includes the
effect of different numerical precisions being used on development and operational hardware, as well
as the possibility of non-deterministic behaviour on GPUs, even if the algorithm does not feature
non-deterministic components [63].

Considerations relating to Size, Weight and Power (SWaP) may mean the computation hardware used to run
the algorithm is also used for other purposes. In such cases, the assurance argument would be expected
to demonstrate neither of these uses will interfere with the other. Standard approaches to partitioning are
likely to be helpful.

Depending on the system, allocation of software to computational hardware may be fixed at design time
or it may be dynamically allocated, possibly changing during operation. In either case, a computation-level
assurance argument would be expected to demonstrate that sufficient resources will be available to allow
the algorithm to complete its processing within the expected amount of time.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

4 Autonomy Architecture-Level Framework: Description

This section describes the framework adopted by the SASWG for autonomy architecture-level
considerations. It is heavily based on the considerations discussed in [6]. Unlike the computation-level
framework (Section 2) and the platform-level framework (Section 6) there are no obvious comparator items
that can be used to support the choice of this framework. However, some confidence can be gained by the
overall comparison of objectives with contents of the AAIP BOK [41] (in Appendix D) and the main section
headings in UL4600 [82] (in Appendix E).

The framework consists of three projections, each of which views the autonomy architecture's properties
along a different axis. The projections are not intended to be strictly independent: they provide
different ways of viewing the autonomy architecture, in order to elicit associated objectives. To facilitate
discussion, the projections have been arranged in an approximate order, working from things more
closely associated with an individual computation to more general considerations, specifically: tolerance;
information provision; and adaptation. Each of these projections is considered, in turn, in the following
subsections. The section concludes with a brief tabular summary of the entire framework.

4.1 Projections

4.1.1 Tolerance

This projection focuses on faults and failures, related to the computation, that the autonomy architecture
must tolerate.

This covers situations where: the computation inputs are invalid (so, for example, they cannot be used for
alternative, non-Al based approaches); the computation inputs are valid but they are outside the domain of
the computation (so, limited confidence can be gained from previously-conducted testing and verification);
and the computation output is invalid. It involves monitoring various aspects, including the health of
sub-systems that provide computation inputs (e.g., vehicle-based sensors) and the internal properties of
the computation.

4.1.2 Information Provision

This projection focuses on the way the autonomy architecture records and maintains information so it can
be provided to relevant stakeholders.

This information may be used in a variety of ways, including: communicating with other entities in the
operational environment (e.g., people and systems); supporting maintenance and further development
of the computation algorithm; and facilitating post-incident analysis. Note that this projection is only
concerned with making sure the required information is available and ready to be used. Actual use of
the information is a platform-level responsibility.

4.1.3 Adaptation

This projection focuses on management and control of changes to the algorithm after its initial operational
use. It also includes changes associated with, for example, supporting software frameworks and
computational hardware. Specifically, it is concerned with updates that would not be produced by following

23

4 AUTONOMY ARCHITECTURE-LEVEL FRAMEWORK: DESCRIPTION

24

the full engineering process associated with development of an algorithm using ML techniques. It includes,
for example, considerations related to on-line learning and provision of regular (e.g., nightly) updates, as
well as changes to computational hardware.

4.2 Summary

Table 3 provides a brief summary of the three projections in the autonomy architecture-level framework
that has been adopted by the SASWG.

Table 3: Summary of Projections Within the Autonomy Architecture-Level

Framework
Projection ‘ Outline ‘
Focused on tolerating faults and failures in
Tolerance

computation-related items

Focused on recording and maintaining information for

Information Provision
subsequent use

Focused on how updates to the algorithm (and

Adaptation
P associated software and hardware) are managed

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

5 Autonomy Architecture-Level Framework: Objectives

This section lists the objectives associated with each projection of the autonomy architecture-level
framework.

5.1 Tolerance

In order to be used in a wider system, an autonomy-related computation (i.e., the software and hardware
that embody an algorithm) needs to be able to cope with the consequences of real world usage. These
may take the form of faults or failures, for example, of sensor systems that provide input data for the
computation. Alternatively, they may occur if the autonomous system is being used outside its intended
operational domain, through deliberate adversarial action, intentional user action or unanticipated
environmental events

Regardless of how they occur, these types of issue need to be handled in safe manner. Equivalently, they
need to be tolerated. The autonomy architecture provides the means by which this is achieved.

There are five objectives associated with this projection.

ARC1-1: Failures of sub-systems that provide computation inputs are tolerated.

Discussion: This objective is concerned with failures in the wider system that may affect computation
inputs, how these failures may be detected and how they may be responded to.

When talking about computation inputs, it can be helpful (as described in [6]) to distinguish between
inputs received: when the model is used within the intended operational domain; when there are failures
elsewhere in the system; or when being attacked by an adversary. This objective just relates to the second
case: inputs under failure conditions. The first case is covered in Objective ARC1-2; the third case is
covered in Objective ARC1-4.

Examples: An important part of tolerating failure-related inputs is knowing the health of the sub-systems
that provide computation inputs, noting that these sub-systems could be quite complex. Such a
sub-system could, for example, combine a physical sensor with some form of processing, possibly including
some history-based features (e.g., a moving average). Health-related information would be expected to be
provided by BIT, whether this be periodic or initiated in response to some external demand (e.g., from the
autonomy architecture).

If an input-providing sub-system is known to be faulty then there are several options available to the
autonomy architecture, including: using the last known good input value; using a constant “good” (or “safe”)
input value; using an input value derived from another sub-system; declaring the computation output as
incorrect (using one of the approaches discussed under Objective ARC1-5).

ARC1-2: Operational inputs inconsistent with the training, test and verification data are
tolerated.

Discussion: This objective recognises that a computation is only valid for operational inputs that are, in
some sense, consistent with (or supported by) the data that was used to develop it.

25

5 AUTONOMY ARCHITECTURE-LEVEL FRAMEWORK: OBJECTIVES

26

Note that this notion of consistency is distinct from that of distribution shift. For example, the training data
may have been supplemented with synthetic examples to address a class imbalance [55]. In such cases,
the training data may exhibit roughly similar numbers of samples in each class, whereas the operational
data may be highly biased towards a subset of classes. Consequently, the operational data would show
an expected distribution shift in comparison with the training data. This shift need not affect the validity
of a single computation, provided that computation’s input is consistent with the data used to develop the
computation (i.e., the training, test and verification data).

There are two ways that an operational input could be inconsistent with this data: firstly, the data could
inadequately cover the operational domain; secondly, the autonomous system could be used outside
its intended operational domain. Sometimes, the distinction between these two alternatives might not
be clear. The first of these considerations relates to the experience projection of the computation-level
framework (subsection 3.1). The second consideration is the focus of this objective.

Examples: The first aspect of meeting this objective involves detecting that an operational input is
inconsistent with the Training, Test and Verification (TTV) data.

The simplest approach to this would be to store the minimum and maximum values for each feature
present in the TTV data and to declare an operational input as being consistent if it is within the
hyper-rectangle defined by these bounds. Whilst it would be easy to implement, this approach has some
limitations. For example, there may be large parts of this hyper-rectangle that do not contain any samples
[7]; a potential mechanism for detecting such regions is provided in [53]. Additionally, an operational input
that was just outside these bounds would, perhaps unfairly, be declared as being inconsistent; this could
be countered by extending the bounds by a suitably-chosen distance. However, justifying the use of a
particular distance may be challenging: a short distance in one dimension may be of much greater import
than a long distance in another dimension, for example. In addition, repeated extensions of this type could
extend the bounds without limit so they should be guarded against.

The approach discussed in the preceding paragraph relies on a summary of the TTV data, specifically,
suitably-extended bounds of the TTV data and the location of any large empty hyper-rectangles within
these bounds. Other ways of summarising the TTV could be used as the basis for alternative approaches.
For example:

e Developing a model that given an operational input returns an estimate of the distance to the nearest
TTV sample. In this case it may be challenging to determine what threshold distance should be used
to determine whether a particular operational input is inconsistent with the TTV data; this could,
possibly, be informed by statistics on the distances between nearest-neighbours within the TTV data.
Alternatively, it may be informed by expert judgement.

e Developing a binary classifier that determines whether a given operational input is inconsistent.
This would treat all of the samples in the TTV data as the “consistent” class. Samples defining
the “inconsistent” class could be synthetically-generated. Additionally, it may be possible to train a
Generative Adversarial Network (GAN) to represent the TTV data, similar to the way that a GAN can
be used to augment training data [5]. The GAN could then be used to determine if an operational
input was consistent with the TTV data.

Regardless of the approach that is used, there needs to be sufficient assurance that the detection of
“inconsistent” operational inputs will be suitably accurate. Depending on the application, that may mean,
for example: no false positives (i.e., points declared as being consistent when they are not); no false
negatives; or neither too many false positives nor too many false negatives.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

The second aspect of meeting this objective involves responding appropriately to the provision of an
“inconsistent” input. In some cases, this may be achieved using the approaches discussed against Objective
ARCT-1. Another option may be to map the operational input to the closest (or, more generally, an
appropriate) input that is consistent with the TTV data; at least in some cases, it should be relatively easy
to extend the detection approaches outlined above to also perform this function. Finally, as was the case
for Objective ARC1-1, another option is to declare the whole computation invalid and rely on one of the
approaches discussed under Objective ARC1-5.

ARC1-3: Faults and failures internal to the computation are tolerated.

Discussion: There are a number of ways that internal faults and failures can be detected in traditional
software. Examples include the use of defensive programming, exception handling (e.g., relating to floating
point numbers) and hardware-based watchdog timers. These types of approach would be expected to be
implemented, for example, as part of meeting the objectives associated with the software projection of the
computation-level framework (subsection 3.4).

In addition, there are a number of related approaches that are specifically tailored to the use of
autonomy-related computations. This objective is concerned with implementing approaches relevant to
Al'and ML.

Examples: A potential approach, specifically related to neural networks, is provided in [74]. This was
developed to provide protection against random hardware errors, specifically, random bit flips. However,
the underlying technique, which is based on anomaly detection in intermediate outputs of the neural
network, may have more general applicability.

Other techniques exploit the general notion of tracking intermediate values within a neural network and
comparing them against expectations. These expectations may be formed by analysing intermediate values
and the associated results during the training process [56].

ARC1-4: Adversarial attempts to disrupt the computation are tolerated.

Discussion: In the ML community, the notion of adversarial examples is often restricted to small
perturbations, generally undetectable by humans, that cause significant output differences (e.g., confident
mis-classification) [78]. Whilst this is an interesting, and important, phenomenon this objective has a much
wider scope. For example, it includes: adversarial poisoning of training data [17]; adversarial influence of
pre-trained networks [37]; and adversarial impact via software frameworks and tools.

Despite this wide breadth, it should be noted that this objective does not seek to address all cyber-related
considerations associated with an autonomous system. For example, this objective does not consider
protection of design information or staff screening. These, and other, wider objectives would be expected
to be covered as part of the normal security engineering process. The Department for Transport (DfT)
Guidelines for Cyber Security for Connected and Automated Vehicles [23], suitably re-interpreted for the
relevant domain, may be helpful in this regard.

Examples: There is a large body of research aimed at providing protection against adversarial inputs (e.g.,
[51]). Likewise, there is considerable research aimed at demonstrating the robustness of ML approaches
(generally of neural networks used for classification tasks) against adversarial inputs: this is typically
expressed as the size of “ball” around each training sample within which inputs will be given the same class
as the sample [86]. At the time of writing, there has been less work on run-time detection of adversarial

5 AUTONOMY ARCHITECTURE-LEVEL FRAMEWORK: OBJECTIVES

27

5 AUTONOMY ARCHITECTURE-LEVEL FRAMEWORK: OBJECTIVES

28

inputs, although some examples are beginning to emerge (e.g., [56], [7]).

As discussed in Objective COM1-1, obtaining data from known, trusted sources and applying strong
guarantees on integrity during transmission can help protect against the risk of data poisoning; these
approaches are also relevant to the use of pre-trained networks. Similarly, applying formal Configuration
Management (CM) processes to data and pre-trained networks are likely to be beneficial, noting that
traditional CM tools may be challenged by the volume and pace of change of these items.

Conceptually, adversarial risks associated with software frameworks and tools may be protected against
by using appropriate development methods during their creation (as discussed in Objective COM4-1).
However, from a practical perspective, most ML pipelines make extensive use of open source frameworks
and tools which, generally speaking, do not provide the same type of assurance evidence as is delivered by
development processes for critical software. Furthermore, traditional approaches to the use of SOUP can
be difficult to employ, especially in the case of frameworks, because their role prevents them from being
placed in a tightly bounded sandbox and because their size prevents widespread reverse engineering
of evidence artefacts. Possible options include using a framework to explore different approaches
then re-coding the chosen one using appropriate development processes. Reverse engineering relevant
evidence artefacts for a suitably-small part of the framework may be another option.

In some cases, software behaviour may be sufficiently predictable to allow for attack code to be detected as
something that is “not normal” [21]. If such a situation is detected then it may be possible to reload original
software from a known good store. Of course, this assumes the known good store is suitably protected,
the loss of processing whilst the reload occurs can be tolerated and false positives are sufficiently rare.

ARC1-5: Incorrect computation outputs are tolerated.

Discussion: |If incorrect outputs are considered to be failures then even the best performing Al
computation (developed using ML techniques) is likely to have an error density orders of magnitude greater
than that of traditional safety-critical software. It follows that the autonomy architecture has to be tolerant
to incorrect outputs.

Examples: There are several architectural approaches that could be used to support this objective [6].
Three examples are illustrated in Figure 2:

e Thefirst architecture makes use of a validity checker, developed using traditional software techniques.
If this detects an incorrect output then the computation is re-run, either using the same input (if the
ML model includes a random element) or a suitably adjusted input. The simplicity of this architecture
is an attraction, but designing a checker that provides the appropriate protection without unduly
constraining the ML model may be challenging.

e The second architecture is inspired by multiplex avionics systems. It uses a number of distinct
computations (or ML models) in parallel, combining their output with some form of voting or
aggregation function. Although it bears some similarities to ensemble methods, the motivation
is different: in particular, ensemble methods aim to improve general performance, whereas this
architecture aims to provide protection against incorrect outputs (e.g., for “edge cases”). The nature
of ML may make it easier to produce separate channels than would be the case for traditional
software [9]. However, it may be difficult to achieve sufficient diversity between the different channels,
especially if they share large amounts of training data. This may make it difficult to provide confidence
that the multi-channel architecture has a sufficiently low error density.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

e The third architecture features two channels, one of which uses Al (implemented as an ML model), the
other of which is implemented using traditional software. The intent is that the traditional software
channel implements an always safe, but low (perhaps very low) performance algorithm, whereas
the ML model offers higher performance with a concomitant risk of incorrect (i.e., unsafe) outputs.
A safety switch, implemented in a similar manner to the validity checker in the first architecture,
controls which channel provides the output to the wider system. Note that in this type of architecture
it may be possible for much of the assurance burden to be borne by the traditional software and the
(traditionally-implemented) safety switch, thus reducing the level of assurance required for the ML
model.

input input input

ML Model _
-] S o
| |8 g 3 55
idi ° ° ° 2 = 2
Validit s E
Y 8l |3 K] 2 T8
Checker s = = = g
l - - -
= = = l
output T
l 35
Voter / ® S
Aggregator L]

}
output j—T

Figure 2: Example Architecture Options

5.2 Information Provision

The autonomy architecture is concerned with integrating computations into a platform, or system. Part
of these considerations include providing information related to these computations to the wider system,
often for onward transmission to users, stakeholders or other systems. In order to support this information
provision, there is an associated need to support information recording and retrieval. These topics are the
focus for this projection.

There are four objectives associated with this projection.

ARC2-1: Relevant information is presented to interacting parties.

Discussion: In order to be safe an autonomous system may need to provide information on what it is
currently doing and what it is planning on doing, as well as the reasons for these decisions. This type of
information may need to be presented to a range of parties, including other systems (both autonomous
and traditional) and humans. In the latter case, this information may be provided purely to inform a passive
user, alternatively, it may be provided to support teaming between the human and the AS, facilitating a
collaborative decision making process.

Examples: An initial step towards satisfying this objective involves identifying the relevant interacting

5 AUTONOMY ARCHITECTURE-LEVEL FRAMEWORK: OBJECTIVES

29

30

5 AUTONOMY ARCHITECTURE-LEVEL FRAMEWORK: OBJECTIVES

parties and understanding what information they require. Attributes of this information, for example,
accuracy, timeliness and availability should also be considered: the data-related attributes listed in [79]
may be helpful in this regard.

Part of this objective relates to the concept of “explainable Al", which is an active research area. There are,
for example, established ways of explaining the result of a classifier [67].

It is important to recognise that the nature of any explanation needs to be tailored to the receiving entity
and the prevailing situation. For example, in time-critical situations, a brief explanation that can be rapidly
understood may be more valuable than a detailed justification. Similarly, when working alongside humans
there may be a requirement to overcome a human’s initial belief that a different course of action should be
pursued [4].

ARC2-2: Relevant information is available to support maintenance and future
development.

Discussion: Objective ARC2-1 focused on operational use. In contrast, this objective is concerned with
information use during other phases within the system lifecycle.

There are several reasons why autonomous systems, and especially the associated ML-enabled
computations, are likely to be updated more frequently than traditional systems. Firstly, it is difficult (if
not impossible) to capture all relevant situations in TTV data; secondly, it is difficult (if not impossible) to
address all potential edge cases during verification activities; thirdly, the dynamic nature of the operational
environment means new requirements may emerge; fourthly, the relative ease (from a technological
perspective) with which updates can be deployed may lower the threshold associated with update
deployment.

This objective is concerned with providing information to support these updates; the update process itself
is the focus of the adaptation projection (subsection 5.3). Also note that this objective relates to general
maintenance and future development. Information (and actions) in response to incidents and accidents
are covered in Objective ARC2-3.

Examples: Satisfying this objective should be relatively straightforward. Inspiration as to the type of
information that is needed should be readily available from test and evaluation activities earlier in the
system development lifecycle. For vehicles, this information would be expected to include data relating to
sensors and control systems, as well as data about the vehicle’s movement [15].

ARC2-3: Relevant information is preserved to support post-incident analysis.

Discussion: Learning from experience is an important part of a mature safety culture. This learning needs
to occur at several levels, including platform-specific, within a domain (e.g., air, rail, road) and cross-domain.
The former of these may be contained within a single organisation, but the latter two require information to
be distributed across wider communities: air accident investigations are an example of this. This learning
is predicated on suitable information being available.

Legislative and voluntary structures that allow “no blame” sharing of this type of information are important,
but they are outside the scope of this objective (and this document). In particular, this objective is focused
solely on the preservation of computation-related information.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Examples: Part of this objective relates to preserving information following a catastrophic accident. This
preservation is likely to require crash-survivable recorders. The precise nature (including, but not limited
to, time bounds) of the required information is, inevitablly, application specific. In the case of road vehicles,
an indication of the duration for which information needs to be recorded is provided in [15].

Another part of this objective relates to managing the immediate aftermath of an accident. In this case,
suitable information needs to be made available to first responders. This needs to be presented in an
intelligible manner without the need for complex analysis or interpretation technigues [15].

A key challenge in the context of autonomous systems is that it might not be readily apparent that the
system has been involved in an accident. This could be the case if, for example, the accident resulted in
damage to other entities but left the platform unscathed. It could also be the case if an incident was a
near miss, which led to no damage. Providing sufficient information to support these types of analyses is
likely to require complex trade-offs between: the volume of information recorded; the period for which the
information is stored; and the location at which the analysis is conducted (e.g., on-platform or off-platform).
It is also likely to require regular analysis of logged information [62].

ARC2-4: Information is managed securely.

Discussion: The preceding objectives in this projection have demonstrated the safety-related importance
of a wide variety of information. It follows that this information needs to be managed securely.

This will require traditional approaches to cyber security, for example, those promoted by the National
Cyber Security Centre (NCSC)?. However, there are aspects of ML that may warrant specific consideration.
For example, both the trained model and the training data may need to be kept confidential.

Examples: In general, there is a trade between allowing use of a model and preventing it, or its training
data, being reverse engineered.

Successful attacks that allow models to be recreated after a limited number of queries have been
demonstrated [80]. There are several possible approaches that could be used to reduce, but not eliminate,
this risk. Examples include: limiting the number of queries a single user can make of a model (which
requires some way of identifying users); and adding noise to the model's output (which requires some
way of identifying how much noise should be added). These approaches also adversely affect the model's
performance. More generally, inspiration may be gained from privacy-preserving data mining [2].

An alternative approach may involve using the autonomy architecture to prevent potential adversaries
getting direct access to the inputs and outputs from an ML model, for example, by passing them through
pre-processing algorithms. This would require traditional cyber security approaches to protect these
algorithms.

There are also attacks that can expose aspects of the training data, for example [32]. Again, protecting
against these may involve using the autonomy architecture to protect against adversaries obtaining direct
access to unfiltered model inputs and outputs.

3 https://www.ncsc.gov.uk/.

5 AUTONOMY ARCHITECTURE-LEVEL FRAMEWORK: OBJECTIVES

31

32

5 AUTONOMY ARCHITECTURE-LEVEL FRAMEWORK: OBJECTIVES

5.3 Adaptation

In some cases, an instance of a computation may be left unaltered after it is deployed into operational
use. Alternatively, all subsequent releases may progress through a full engineering development process.
If either of these approaches is adopted then the adaptation projection is not relevant to that application.

However, it is expected that many computations developed using ML techniques will be adapted in some
way following their initial operational use. This could be achieved using a variety of mechanisms, including:
online learning (where the computation continues learning and, consequently, adapts during operational
use); and nightly over-the-air updates (which are released after a reduced amount of regression testing,
rather than following the full engineering process).

There are two objectives associated with this projection.

ARC3-1: Inappropriate or unauthorised adaptations do not occur.

Discussion: Fundamentally, an adaptation changes some aspect of the computation’s behaviour. This
means adaptations have the potential to undermine an assurance case and need to be managed carefully.

For the purposes of this objective, an inappropriate adaptation would be one that did not achieve
the intended aims. As such, the notion of what is inappropriate is, inevitably, context specific.
Potential examples include an adaptation that: unintentionally reduces the computation’s performance
in common situations; unintentionally reduces the computation’s performance in rare situations; alters the
computation’s non-functional behaviour in a way that detrimentally affects interfacing items. An adaptation
that was incorrect, perhaps because it did not correspond to the expected information format, would also
be considered to be inappropriate.

Conversely, an unauthorised adaptation would be one that was made without appropriate authorisation.
This could, for example, occur if a malicious third party, or a rogue employee, implemented an adaptation
that was intended to cause harm. Alternatively, an adaptation that was released by the computation
developers but which had not completed the necessary pre-release processes would also be considered
unauthorised.

Examples: Since it uses a very distinct approach it is simplest to consider online learning as a special case.
This is most commonly achieved via RL. There are a variety of approaches to ensuring adaptations via RL
are appropriate, including: constraining the optimisation criterion; adopting a risk-sensitive optimisation
criterion; having the computation ask for help; and using risk-directed exploration [33]. Alternatively, or
additionally, it may be possible to provide a set of abstract policies that formally constrain the exploration
of an RL agent [57] or including a representation of fear within the learning mechanism [54].

The nature of online learning is that it happens continuously, as a natural part of the computation’s
use. Hence, the mechanism by which adaptations are achieved forms part of the full engineering cycle
associated with initial release to operational use. Consequently, the notion of an unauthorised adaptation
does not apply in this case.

For computations whose behaviour is not altered by their use, an adaptation involves a deliberate act,
typically loading new parameters (or hyper-parameters). For example, in the case of an NN, an adaptation
may involve loading new network weights and biases. Considerations associated with Parameter Data
ltems (PDlIs) are important, for example, the data being managed as a distinct entity and its effect on
computation behaviour being understood [69]; this latter point may, for example, require some form of
regression testing before the adaptation is deployed.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Some form of testing would be expected to be conducted before an adaptation was performed. This
should be sufficient to prevent cases where the adaptation unintentionally reduces the computation’s
performance in common situations. One way of achieving this would be to define a collection of situations,
along with a minimum level of performance in each. Adaptations would only be considered appropriate if at
least the minimum level of performance (including safety and security) was achieved in each situation. This
collection of situations can be viewed as being analogous to a minimal set of regression tests for traditional
software. It can also be viewed as analogous to the criteria used to validate flight simulation training devices
[28]. Note, however, that aviation is a well-understood domain. Determining an appropriate collection of
situations is likely to be more difficult in many other domains. Also note that the collection may need to
change, either in response to changes in the computation, or changes in the external environment in which
the system is used.

Protecting against the case where the adaptation unintentionally reduces the computation’s performance
in rare situations is more difficult. In many cases a balance has to be found between enacting an adaptation
that will demonstrably benefit computation performance in common situations against the possibility
that the same adaptation could reduce performance (in a way that affects safety) in rare situations. An
evidence-based, structured argument is likely to be required to demonstrate that an appropriate balance
has been achieved. Features of the autonomy architecture, especially those related to the tolerance
projection (subsection 5.1), could protect against egregious safety failures; if present, these could also
simplify the “balance” argument.

There are several aspects to understanding how an adaptation may affect interfacing items. Broadly
speaking, three categories of interfacing item can be considered: items within the same platform as the
computation; items within other systems; and interactions with humans. Platform-level testing ought to
ensure the adaptation does not adversely affect interfacing items within the system. Likewise, this testing
also ought to cover (planned) interactions with other systems. Interactions with humans are more subtle,
especially if the human requires training or certification in order to use the computation. In this case, the
impact of the adaptation on user training or certification needs to be considered. These considerations
need to take account of not just the latest adaptation, but the cumulative effect of all adaptations that have
occurred since the last training or certification.

There are two main aspects to preventing unauthorised adaptations: cyber security; and management.
Guidance on cyber security is available from a number of sources, including cyber security principles for
connected and automated vehicles [23] (which can be generalised to cover a wide range of autonomous
systems) and the NCSC. General engineering processes, especially those associated with safety-related
systems, would be expected to contain safeguards that prevent unauthorised releases.

The preceding discussion has focused on changes to the computation. Changes to supporting software
and computational hardware are also important, but these should be manageable within normal
engineering processes.

ARC3-2: Computation behaviour is appropriate before, during and after an adaptation.

Discussion: This objective recognises a number of things, specifically: adaptations should be performed
against a known baseline; a computation may be in use when an adaptation request (or command) is
received; an adaptation cannot be applied instantaneously; and the process of applying the adaptation
may fail.

Any of these factors could undermine an assurance argument. Some, like the finite amount of time taken
to apply an adaptation, may only undermine an assurance argument for a relatively small amount of time;

5 AUTONOMY ARCHITECTURE-LEVEL FRAMEWORK: OBJECTIVES

33

5 AUTONOMY ARCHITECTURE-LEVEL FRAMEWORK: OBJECTIVES

34

others, like the consequences of a failed adaptation, may be persistent (unless appropriate action is taken).

This objective also recognises that many different types of computation behaviour may be appropriate.
This is a consequence of requirements being implicitly expressed via the training data, rather than being
formally decomposed (in a traceable manner) as is the case for traditional safety-related software.

Examples: If all objectives associated with the computation-level framework have been satisfied then the
computation behaviour ought to be appropriate before an adaptation is applied.

In some cases it may be possible to instantiate two (or more) autonomy architectures. Such an
arrangement would allow one instantiation to adapt whilst the other continues to respond to operational
inputs; it would also have the additional benefit of increasing reliability in the context of hardware failures.
If two copies are available then the system can determine a suitable time to switch from the pre-adaptation
computation to the post-adaptation one. This switch can be implemented in software, meaning it can be
completed without a noticeable impact on the computation’s ability to respond to operational inputs. More
specifically, this arrangement provides a means of demonstrating that computation behaviour remains
appropriate during an adaptation.

If two (or more) architectures are not available then the computation is likely to have to stop processing
operational inputs before allowing the adaptation to occur. This will require communication between the
computation and the system to ensure the gap in processing can be accommodated safely. For example,
in the case of an autonomous vehicle, an adaptation could be postponed until vehicle car is stationary, the
parking brake is on, the engine is turned off and there are no people in the vehicle. An alternative may
be to designate safe regions (e.g., the owner’s garage, the dealer’s service area) and only allow adaptations
to occur when the vehicle is in one of these regions. Whatever approach is used, care needs to be taken
to protect against the possibility of platforms not being in a situation where an adaptation is allowed for a
prolonged period of time. Additionally, care needs to be taken to prevent removal of the system from the
safe region until the adaptation is complete (and confirmed successful).

Some aspects of ensuring that behaviour is appropriate after an adaptation are covered by the appropriate
part of Objective ARC3-1. The current objective includes cases where the adaptation process did not
complete successfully. Failed adaptations should be detectable using standard approaches to data
integrity and post-adaptation BIT. In many cases, the most suitable way of handling a failed adaptation
is to revert to the previous “last known good” configuration. This requires storing the pre-adaptation
computation parameters in some way (which happens naturally if there are multiple instantiations of the
autonomy architecture).

In some cases (e.g., when the adaptation addresses a serious flaw in the computation) reversion to the
previous configuration may not be desirable, regardless of whether this is readily available. It follows that
every platform ought to be capable of being put in a safe state that can be maintained for a considerable
period.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

6 Platform-Level Framework: Description

This section describes the framework adopted by the SASWG for platform-level considerations. The
justification for adopting this framework is provided in Appendix C.

The framework consists of four projections, each of which views the platform’s properties along a different
axis. The projections are not intended to be strictly independent: they provide different ways of viewing
the platform, in order to elicit associated objectives. To facilitate discussion, the projections have been
arranged in an approximate order, starting at the platform and working, in a sense, outwards: behavioural
specification; interacting items; people; environment. Each of these projections is considered, in turn, in
the following subsections. The section concludes with a brief tabular summary of the entire framework and
an illustration of how the framework's projections inter-relate.

6.1 Behavioural Specification

This projection focuses on the platform specification. Equivalently, it considers the system-level
requirements that the platform would be expected to satisfy and the methods the platform developer
may use to demonstrate satisfaction.

From the perspective of an autonomous system, the most challenging aspect of these requirements is
defining the required platform behaviour. Hence, this aspect is emphasised in the projection’s title. In
addition, a key aspect of this projection is defining the scope of the autonomous aspects of the platform.

6.2 Interacting Items

This projection focuses on items that are intended or required to interact with the platform, but are not
directly owned by the platform developer or operator.

The interacting items projection includes the case where there are multiple, notionally identical systems:
for example, when an autonomous vehicle manufacturer has sold many vehicles, each of which is intended
to be used individually. It also includes the case where the wider system includes optional items that may
or may not be present: for example, additional roadside infrastructure that is only present in large cities.
This projection may also include a central repository, which is used to support operation, maintenance and
future enhancement of the platform.

6.3 People

This projection focuses on people associated with and affected by the platform, including those operating
or using the system.

The projection adopts a whole lifecycle perspective, including design, manufacture, operation, maintenance
and disposal. It includes: those operating the system; those associated with the system (e.g., maintainers);
and bystanders in the operational environment of the platform. This latter class may be highly important for
some autonomous systems (e.g., self-driving vehicles); conversely, it may be absent for other autonomous
systems (e.g., medical diagnosis systems).

The projection also includes people behaving in an adversarial manner.

35

6 PLATFORM-LEVEL FRAMEWORK: DESCRIPTION

36

6.4 Environment

This projection focuses on items in the platform’s operational environment that are outside the control of
the platform developer or operator.

It includes, for example, other platforms and meteorological conditions, as well as things like terrain and
infrastructure. It covers normal operating conditions and abnormal situations (e.g., extreme weather and
unexpected terrain). It includes the potential for elements of the environment to be used in a hostile
manner.

6.5 Summary

Table 4 provides a brief summary of the four projections in the platform-level framework that has been
adopted by the SASWG.

Table 4: Summary of Projections Within the Platform-Level Framework

Projection ‘ Outline ‘

Focused on platform-level specification; includes defining

Behavioural Specification
the scope of autonomous aspects

Focused on things intended or required to interact with
Interacting ltems the platform, not directly owned by the platform
developer or operator

Focused on how the platform interacts with people;

Peopl
eopie adopts a whole lifecycle perspective

Focused on things in the operational environment that

Environment)
are outside the control of the developer or operator

Experience in writing this document has demonstrated the potential for confusion with regards to these
projections and how they inter-relate. Firstly, it is important to remember the projections are a means to
an end, rather than an end in themselves. Users of this document are not necessarily expected to directly
align their development efforts with the projections. Prolonged discussions about whether a specific item
(e.g., lane markings on a road) are part of the environment or an interacting item should not be of critical
importance in establishing a safety argument for an autonomous system.

To that end, Figure 3 provides an alternative illustration of the platform-level projections and how the
inter-relate. For example, the people projection can, in some ways, be considered as a specialisation of the
environment projection.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

e Y
Environment c a8
most general, least predictable ._g ﬁ E
()
\) 883
e 2 SIS
53
People SRS
may, or may not, be predictable (£ *E g
: © Q3
and manageable by design 5 g L
\ y o < g
e A S8 S
(2]
© o %
i 5 &=
Interacting ltems 233
interactions managed by design <
N A

Figure 3: Platform-Level Framework Projections Inter-Relationships

6 PLATFORM-LEVEL FRAMEWORK: DESCRIPTION

37

6 PLATFORM-LEVEL FRAMEWORK: DESCRIPTION

ISE

yue|q Ajleuonuaiul st aded siyl

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

7 Platform-Level Framework: Objectives

This section lists the objectives associated with each projection of the platform-level framework.

7.1 Behavioural Specification

The behavioural specification projection is concerned with what the platform should do and, also, what
it should not do. These concerns are viewed largely from the perspective of an operator or user of the
platform; that is, they are largely concerned with externally-observable effects, rather than the internal
workings and structure of the platform.

There are six objectives associated with this projection.

PLT1-1: All aspects of platform behaviour that are achieved using autonomy-enabling
techniques are justified.

Discussion: Ultimately, the platform has to be considered as an overall entity, which is demonstrably
safe. However, the novelty of autonomous systems, and especially the Al and ML techniques that enable
them, means these aspects need special attention. To focus that attention there is a need to identify such
techniques, including how they contribute to platform behaviour.

Given the current low maturity of autonomy-related techniques, there is a strong safety-related argument
that wherever possible more traditional techniques should be used [72]. Consequently, as well as
identifying where autonomy-related technologies are used, their use should also be justified.

Examples: Before uses of autonomy-enabling techniques can be justified, they must first be identified.
There are, broadly-speaking, two ways that the use of autonomy-related techniques can be identified,
specifically, top-down and bottom-up. In a top-down approach, requirements can be tagged to indicate
whether they are achieved through the use of autonomy-related technigues. This tagging could start at the
system-level and be flowed down to lower levels as requirements are decomposed during a typical systems
engineering process. Conversely, in a bottom-up approach, specific components (or items, or sub-systems,
or algorithms) can be flagged as using autonomy-related techniques, with this information flowing up to
functions and platform-level behaviours that use those components.

Regardless of which approach is used, there should be a clear link from computations, through autonomy
architectures, to platform behaviour. These links enable evidence associated with objectives from the
computation and autonomy architecture frameworks to support platform-level safety arguments. They
also allow platform-level requirements and constraints to provide the context for lower-level activities.

An argument to justify use of an autonomy-enabling technique could be based on many factors:
performance, including an inability to achieve the associated function using traditional approaches, is often
an important one.

PLT1-2; Acceptably safe operation for the platform is defined.

Discussion: In order to argue that a platform is “acceptably safe” there needs to be a definition of this term
for that particular platform, within its intended operational domain. In traditional safety engineering, this
definition may be comparatively simple, drawing upon contextual assumptions that significantly simplify the

39

40

7/ PLATFORM-LEVEL FRAMEWORK: OBJECTIVES

operational domain. In contrast, a key feature of many autonomous systems is their intended use within
complex, diverse and dynamic environments. Consequently, a key aspect of defining safety for autonomous
systems is understanding, and suitably bounding, interactions with these types of environment.

Given the nature of these environments, it may also be necessary to consider what safe operation means
should the platform be used outside the intended operational domain. This could, for example, involve
finding a way to safely stop operation.

Examples: Traditional techniques for hazard assessment, for example Hazard and Operability Study
(HAZOP) [27], may help generate an understanding of potential unsafe outcomes. However, to be
productive these techniques may need to focus on platform-level outcomes (e.g., the vehicle stops too
late) rather than component-level actions (e.g., the brakes are applied too late).

In addition, the consequences of a vehicle stopping too late are critically dependent on both the nature of
the operational domain and the specific situation pertaining at the time of the occurrence. Identifying
specific situations that correspond to unsafe outcomes is one challenge. Providing some form of
confidence that all relevant situations have been identified is another. The notion of situation coverage
[3] may help, as might environmental hazard analysis [25].

Arguably, things that are unsafe can be viewed as stakeholder losses from the perspective of at least one
stakeholder. This view can include, for example, accidents that cause significant environmental impact
representing a loss from the perspective of stakeholders in the local community. In addition, many (but
not all) autonomous systems exploit autonomy as part of a control loop. In such cases, accidents (i.e.,
stakeholder losses) can be viewed as a consequence of inadequate control. Given this discussion, there
may be value in a Systems Theoretic Process Analysis (STPA) based hazard analysis [46].

As well as being safe during use, there may also be a need to define a safe state, in which the platform
can be left for a prolonged period of time. Understanding this state (or collection of states), together with
trajectories by which they may be reached, is an important part of maintaining safety in the presence
of faults and failures (as discussed in Objective PLT1-4). Whilst it is a simple concept, defining and
implementing a safe state is not trivial. For example, in the case of a self-driving car a safe state could
be one where the car is stopped. However, this might not be safe if the car is stopped in a driving lane on
a motorway, or if it is stopped on a level crossing, or if it is in any number of other dangerous locations.
Rigorous, structured analysis of the intended operational domain and associated environment may help.

PLT1-3: The specified behaviour of the platform is predictable, consistent and safe.

Discussion: Specification of platform behaviour is needed for several reasons. For example: it is needed
to provide the expected outcome for system-level tests; in addition, it facilitates operation alongside other
entities within the intended operational domain. Predictability and consistency of platform behaviour are
important for similar reasons. The need for safe behaviour is obvious, noting that the definition of safety is
expected to be produced as part of the Objective PLT1-2.

Examples: Some aspects of behavioural specification may be addressed by traditional systems
engineering techniques. However, one advantage of autonomy-enabling technologies is they do not need
a detailed, low-level behavioural specification that has been decomposed from platform-level requirements
in a traceable, hierarchical manner. For such technologies, it is helpful to consider both intended
platform-level behaviour (i.e., “the platform should ...") and unintended, or undesirable, behaviour (i.e., “the
platform should not ..."). These considerations may be usefully informed by iteratively specifying behaviour
and observing the results in specific scenarios (both hand-crafted and automatically-generated).

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

The qualities of predictability and consistency do not necessarily require precisely identical, repeatable
behaviour in apparently similar situations. Demanding that level of determinism is deemed inappropriate
for at least two reasons. Firstly, minute changes in the autonomous system'’s perception of the situation
could cause a flip between two different but equally acceptable behaviours: more particularly, for an
autonomous system used in a domain of even moderate complexity, the chance that identical situations
will be presented is negligible, and this chance reduces as the domain gets more complex. Secondly,
there may be good reasons why a form of pseudo-randomness is included within the autonomy-enabling
algorithm. Whilst precise repeatability is not required, meaningful bounds need to be placed around
expected platform behaviour. Scenario-based sensitivity analysis may help inform this consideration.

PLT1-4: The specified behaviour is safe in the presence of faults and failures, as well as
foreseeable misuse and abuse.

Discussion: Objective PLT1-3 is focused on a fully-functioning platform that is being used as intended.
Unfortunately, neither of these criteria can be assumed for platforms subjected to real-world use by
humans. Consequently, this objective is concerned with platform behaviour in sub-optimal conditions.
This includes, for example, deliberate misuse that causes the platform to be used outside its intended
operational domain.

The concepts of faults and failures can be directly related to those of misuse and abuse. For example, a
fault in some part of the platform may cause an operator to deliberately misuse the platform in an attempt
to complete their task. For this reason it is convenient to combine these items in the same objective.

Examples: This objective may raise the question of, “How many faults and failures should be tolerated?”
In considering this question, it should be noted that current safety-related systems often require human
intervention to handle cases involving multiple faults and failures. However, autonomous systems change
the role of the human operator, which may increase the number of faults and failures that have to be
handled by the platform, without human intervention. More generally, component failure rates could be
used to inform the number and types of faults and failures that should be considered within this objective.

Traditional safety engineering techniques, for example, redundancy, could be used to provide for safe
behaviour in the presence of faults and failures. Alternatively, or additionally, a Minimum Equipment List
(MEL) could be defined, with the health of this equipment being monitored (as discussed in Objective
ARC1-1). There may be a need to consider the case of a platform that has suffered too many faults and
failures or, equivalently, a platform that is in operational use when the full MEL ceases to be available. To
handle such circumstances there may need to be a defined safe state for the platform; there may also be a
need for the platform to maintain an ability, or trajectory, to reach this safe state (which could be identified
as part of Objective PLT1-2).

Detecting and preventing misuse and abuse is a difficult challenge. Simplistically, misuse could be
construed as cases where a human operator tries to do something in opposition to the autonomous part
of the platform. However, that view fails to account for the fact that, in some circumstances, the human
might be correct: anillustration can be taken from traditional, non-autonomous software, where algorithms
prevented access to engine thrust reversers even though the aircraft was on the ground, leading to runway
excursion and loss of life [31]. Equally, there are cases that exhibit the converse, namely, the software is
correct and the human is not.

A clearer view could perhaps be formed by looking for situations where the human operator tries to
make the platform behave contrary to the safety-related requirements established via the previous two
objectives. For example, this could be an effective way of protecting against misuse that aims to deliberately

7 PLATFORM-LEVEL FRAMEWORK: OBJECTIVES

41

42

7/ PLATFORM-LEVEL FRAMEWORK: OBJECTIVES

take the platform outside its intended operational environment. Requirements that relate to unintended
behaviour (i.e., “the platform should not ..") are especially helpful in this regard. Thinking about the
potential for misuse and abuse can help establish requirements of this type.

PLT1-5: The behaviour of the platform is verified.

Discussion: Whereas other objectives in this projection have established requirements, this objective
is concerned with verifying that these platform-level requirements have been satisfied. This includes
providing artefacts to demonstrate (e.g., to a regulator) that verification has been successfully completed.

Examples: As with traditional systems, there are several ways to provide evidence that a given requirement
has been satisfied. However, in comparison to traditional systems, the potential behaviour of autonomous
systems is much less bounded. This is likely to require a gradual, progressive approach to Test,
Evaluation, Verification and Validation (TEVV), beginning with simulation and real-world testing in controlled
environments (e.g., closed roads).

Simulation, in particular, is expected to play a significant role in requirement verification. For example, it
allows testing of cases that would be too expensive or too dangerous to consider in the real-world; this is
likely to be especially valuable for test cases involving platform faults and failures. Whilst simulations are
undoubtedly valuable, demonstrating that the simulation is a suitable representation of the real-world may
be a significant challenge. This is important as there are many examples of autonomy-related techniques
exploiting flaws in simulations [20]. It follows that unsuitable simulations could fail to detect important
errors in platform behaviour.

A key concept relating to verification of platform requirements for autonomous systems is the notion of
coverage. Generally speaking, in operational use these requirements would be expected to be satisfied in
a wide range of situations, this breadth resulting from the the complexity of the environment the platform
has to operate in. Understanding how the verification evidence covers this variety is a key issue: analyses
such as situation coverage [3] may assist. This notion of coverage needs to be combined with notions of
coverage relevant to computations (as discussed in Objectives COM1-3 and COM2-5).

PLT1-6: Operational monitoring is sufficient to identify and support the mitigation of
new hazards, including emerging cyber security threats.

Discussion: Many safety-related systems include a form of monitoring; continuous, or periodic, with
BIT being one example. The open nature of the operational domain associated with many autonomous
systems means there is a need to include this type of monitoring at the platform level. This should help
capture cases where changes in the operational domain (or aspects of the operational domain that were
not fully understood during development) result in new hazards.

The nature of autonomy-enabling technologies (including Al and ML) means they rely heavily on data,
software and computational hardware. Consequently, cyber security is an important consideration. Hence,
monitoring to spot the emergence of hazards from that domain is important, especially given the pace at
which such hazards may emerge.

Examples: For the purposes of discussion, it is initially convenient to split operational monitoring into two
main categories: monitoring of the environment; and monitoring of the platform.

Monitoring the environment is important as, in general, autonomous systems are used in environments

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

that are less constrained, and less prescriptive, than is the case for traditional systems. This increases the
likelihood of the platform being used outside the intended operational domain (either by accident or by
deliberate intent). Conversely, most, if not all, of the platform verification will be based on the assumption
that the platform is being used inside the intended operational domain. This apparent inconsistency may
give rise to new hazards.

These hazards may need to be dealt with in two separate time scales. Firstly, if monitoring detects platform
use outside the intended operational domain then appropriate action should be taken to maintain safety.
This could, for example, involve achieving a defined safe state for the platform; alternatively, it could
involve attempting to manoeuvre the platform back inside the intended operational domain. Secondly,
if monitoring routinely detects use outside the intended operational domain then this is indicative of a
need to change something about the platform (e.g., the system-level requirements, the assumptions made
during verification, the way operators are trained).

Monitoring of the platform includes monitoring the sub-systems that provide inputs for the computation
(as discussed under Objective ARC1-1). It may also include monitoring that decisions (based on
autonomy-related technologies) have the expected consequences: for example, applying vehicle brakes
should lead to a reduction in speed.

In addition to the separate cases discussed above, there are some aspects of operational monitoring
that need to be considered more generally. For example, there may be a need to review information
from operational use to identify near misses or anomalous behaviour. There is also likely to be benefit
in capturing at least a selection of operational inputs, for example, to support future support and
maintenance, as well as to monitor for potential distribution shift [61].

In these contexts there may be a need to make a decision on the extent of operational monitoring that
is required. It is conceivable that a fleet of self-driving cars could cover thousands, or possibly millions, of
miles a day. In such cases it may be neither feasible nor appropriate to analyse every single operational
input seen by every single platform. Consequently, a reasoned argument as to what data will be analysed
and why is likely to be required. In some cases a uniform, random choice of platforms may be appropriate;
in other cases, there may be a specific desire to spread data collection across the operational domain as
far as possible, resulting in a prioritisation of platforms that have experienced more exotic parts of the
operational domain.

The final part of operational monitoring is specifically aimed at cyber threats. This may include specific
on-platform monitors (e.g., to detect anomalous software behaviour, [21]). An understanding of what
aspects should be prioritised, from a monitoring perspective, could be gained by looking at the security
perimeter (i.e., interfaces into the platform) and the security environment [71].

Depending on the specifics of the deployment, monitoring could also involve comparing multiple platforms
within a fleet. The intuition is that unexpected, or unexplained, behaviour in the case of one platform,
or a small number of platforms, could be indicative of a cyber-related issue. It could also be indicative
of a number of other issues as well, many of which would require investigation from a safety-related
perspective.

In addition to these platform-focused aspects of cyber-related monitoring, there is also likely to be a
need to monitor general, cyber-related information. This should include monitoring for information on
vulnerabilities associated with components and sub-systems used within the platform.

7 PLATFORM-LEVEL FRAMEWORK: OBJECTIVES

43

44

7/ PLATFORM-LEVEL FRAMEWORK: OBJECTIVES

7.2 Interacting Items

The interacting items projection considers items that are are intended or required to interact with the
platform, but are not directly owned by the platform developer or operator. Equivalently, this projection
considers things that the platform is expected to interface with. In some cases, the platform developer
may be able to exercise some degree of control over both sides of the interface (e.g., for platform test rigs);
alternatively, it could be because the developer contributes to an open standard, as may be the case for
roadside furniture.

There are three objectives associated with this projection.

PLT2-1: Interacting items that affect the safe operation of the platform are identified
and understood.

Discussion: At least some of the interacting items are likely to have the potential to affect safe operation.
The effect could arise if, for example, the item provided incorrect information and this was used without
on-platform checking. Alternatively, it could arise if the item placed the platform in a special configuration,
for example, to facilitate maintenance and this configuration was mistakenly left in place when the platform
was returned to operational use. Given this potential impact, it is important that all interacting items are
identified and their potential impact on safety is understood.

As well as being important in its own right, the understanding gained from satisfying this objective supports
the other objectives associated with this projection.

Examples: There is a wide range of interacting items that could potentially affect safety. In addition
to off-platform information sources and maintenance equipment, other examples include training
information, technical publications and the process by which platform updates are achieved. Several of
these items can be viewed as being safety-related data. Consequently, Data Safety Guidance may be helpful
[79].

Several approaches could be used to gain the understanding necessary for this objective. For example, part
of STPA [46] involves drawing a control structure, which illustrates entities, control actions and feedback
information. This should highlight key interacting items as well as their potential effect on the platform,
which is typically related to the information that is provided.

An alternative approach could involve looking at the platform from the perspective of a capability
management framework, for example, the Defence Lines of Development (DLODs) used by the UK Ministry
Of Defence (MOD), which are: training; equipment; personnel; information; doctrine and concepts;
organisation; infrastructure; and logistics [59]. Considering each of these “lines” should help identify
interacting items and, subsequently, their potential effects on safety.

PLT2-2: Interactions preserve platform safety.

Discussion: This objective is concerned with interacting items that are behaving according to their design
intent. Since the platform developer has intentionally included these interactions, it is reasonable to
assume they also have a sound understanding of this intent. Consequently, much of this objective would
be expected to be satisfied via standard system and safety engineering approaches. However, there may
be a number of autonomy-related “edge cases” that may warrant specific investigation.

For example, in some situations, it is possible (perhaps likely) that multiple examples of the same

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

autonomous system will be present in the same environment. This would be the case, for example, if
a manufacturer of self-driving vehicles had sold many vehicles within the same geographical region. Such
vehicles are clearly under the control of the platform developer, but they may not naturally be highlighted
by approaches used to identify interacting items.

This notion can easily be extended to interactions between different types of platform developed by
the same organisation. If, for example, there is an industry-wide standard for sharing information then
the notion can also be extended to cover platforms developed by other organisations; alternatively, or
additionally, these platforms could be covered by the various objectives associated with the environment
projection.

Examples: It may be the case that the techniques used to verify platform behaviour (i.e., to satisfy
Objective PLT1-5) naturally extend, or can be easily extended, to cover the case of multiple platforms.
Whilst this would make a significant contribution to the current objective, there remains a need to
describe, and justify, the test cases that are considered (e.g., how many platforms, what initial states and
configurations, and so on). These considerations could be informed by some notion of coverage, similar to
those discussed in Objective PLT1-5.

Notions of coverage would also be required if new verification approaches needed to be developed in
relation to this objective. These may be further complicated by the possibility of different software versions
(including model variants) amongst the platforms.

If multiple instantiations are in operational use then each instantiation would be expected to comply with
all objectives. Nevertheless, having multiple instantiations provides a potential opportunity to enhance
fleet-wide safety. Consider, for example, a large multi-national organisation responsible for running many
data centres. Every data centre would not be expected to be run at precisely the same software patch
level. In this context, diversity in patch levels offers some protection against an unknown common mode
failure affecting all data centres. In addition, it allows for changes to be tested in a small number of data
centres before they are gradually rolled out.

Conceptually, diversity offers the same benefit for fleets of autonomous systems. However, in this case,
a balance needs to be found between the known risks associated with older implementations and the
potentially unknown risks associated with a newly-produced implementation. An incorrect balance would
adversely affect platform safety.

It should also be noted that fleet-level diversity will naturally arise if the platform exhibits online learning. In
this case, appropriate measures need to be in place to monitor and control this diversity. Otherwise, two
apparently identical autonomous systems may exhibit very different behaviours; this could confuse people
and other entities in the environment, with potentially unsafe results.

The first step in managing diversity within a fleet is to gain information on the individual platforms [9]. This
could involve reporting from every autonomous system, or from a suitably-sampled subset of them. With
this information, the developer could replicate platform behaviour in a synthetic environment (that has
been demonstrated to be suitably representative).

This allows the developer to measure performance in a number of standard scenarios (or situations). The
choice of scenarios would be expected to be described and justified as part of the computation’s assurance
argument. Care needs to be taken to ensure that the selection of scenarios is suitable for the intended
use. However, experience from other areas suggests this may be possible: for example, a standard set of
situations is used when testing an aircraft flight simulator [28]. The notion of situation coverage could also
inform this decision [3].

7 PLATFORM-LEVEL FRAMEWORK: OBJECTIVES

45

7/ PLATFORM-LEVEL FRAMEWORK: OBJECTIVES

46

Using standard scenarios provides a practical measure of the impact of diversity across the various
instantiations. This may be supplemented by a theoretical measure of diversity, which could be calculated
by sampling from across the input domain and comparing the results provided by different instantiations.

Verifying safe behaviour in the presence of autonomous systems developed by other manufacturers may
be complicated, especially if manufacturers do not wish to share detailed, implementation-level information
about the behaviour of their systems. This could, potentially, be overcome if a central regulatory authority
received such information and, furthermore, investigated behaviours in multi-manufacture situations. This
might be achieved using an appropriately verified and validated simulation environment.

Such an approach places a significant burden on the regulatory community, which they may be unwilling or
unable to accept. From a manufacturer's perspective, an alternative would be to treat other autonomous
systems as essentially unpredictable. Robustness testing of behaviours, and information passed via an
agreed standard interface, would be helpful in this regard.

Conceptually, this approach moves other manufacturers’ systems into the environment projection, so there
would be value in considering the objectives associated with that projection.

PLT2-3: Unavailability or unreliability of interacting items does not make the platform
unsafe.

Discussion: Although the distinction is not always rigid, generally speaking, it is easier to control things
that are part of the platform, rather than interacting items. For this reason, there is a greater chance
of interacting items being (or becoming) unavailable during operational use of the platform. Since the
platform should remain safe at all times, it follows that unavailability of interacting items should not result
in an unsafe platform.

Similarly, there is the possibility of interacting items being unreliable, for example, providing misleading
information. Should it occur, this unreliability should not result in an unsafe platform.

Examples: Arguably, a good understanding of what constitutes safe behaviour (from the objectives
associated with the behavioural specification projection) combined with a good understanding of potential
impacts of interacting items (from Objective PLT2-1) should make a significant contribution to satisfying
this objective (i.e., Objective PLT2-3).

There are, however, some subtleties. For example, there may be circumstances in which unavailability,
or unreliability, of interacting items causes a gradual reduction in operational performance until a point
is reached whereby the platform is no longer safe. This could occur if, for example, regular (but not
necessarily frequent) communications with a central control entity are required to account for distribution
shift. A suitable response to this gradual degradation could be, firstly, informing the operator and,
subsequently, placing the autonomous system in a safe, potentially non-operational, state.

7.3 People

It is possible to imagine autonomous systems that interact with people in a very limited, very indirect way:
an autonomous system that manages load balancing across computational resources in order to deliver
communications functions could be one example. Despite this, most autonomous systems are expected
to involve significant interaction with people. This is especially true for safety-related systems, which are
the focus of this document. Consequently, interactions between the platform and people need to be

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

considered. These considerations need to cover the whole system lifecycle, as well as people directly
involved with the platform (e.g., operators and maintainers) and bystanders.

There are four objectives associated with this projection.

PLT3-1: Safety-related demands on people interacting with the platform are reasonable.

Discussion: Despite their autonomous nature, some platforms may require people to perform certain
functions to maintain safety. For example, a person may be required to perform a monitoring function
and to take over control in off-nominal situations. Alternatively, a person may be required to perform
regular maintenance activities, including sensor calibrations. Regardless of their nature, if human actions
are necessary to maintain safety then these actions need to be reasonable; for example, they should not
exceed the expected limitations of the relevant demographic. Equivalently, a system cannot be made safe
by asking people to perform unreasonable actions.

Examples: Part of this objective relates to understand what safety-related demands are being placed on
people. The various objectives associated with the behavioural specification projection should provide
a good understanding of safety from a holistic perspective. Techniques such as task analysis or the
Functional Resonance Analysis Method (FRAM) [45] may help identify those parts that rely on human
actions.

There are likely to be domain-specific considerations in determining whether these actions are
“reasonable”. For example, a function that any member of the general public is expected to complete
should be less demanding than a function that will only be completed by qualified staff.

Human actions are likely to be repeated many times during the life of an autonomous system; they
may be repeated many times during a single operational use of such a system. Consequently, generic
information on human performance (e.g., reliability, timeliness, attentiveness) may help inform judgements
on reasonableness.

PLT3-2: Suitable interfaces are provided for people that may interact with the platform.

Discussion: In many cases, people would be expected to interact with the platform through designed
interfaces. Experience with traditional systems has demonstrated the importance of these interfaces.
Arguably, in the case of autonomous systems, these interfaces become even more important: partly
because of the unfamiliarity caused by the way autonomy changes the role of the human; and partly
because there are examples of humans over-riding system behaviour because of poor situational
awareness.

Although specifically-designed interfaces are of great importance, there may be cases where people
interact with a platform in a more general manner. For example, in the case of self-driving vehicles,
pedestrians may observe the vehicle’s trajectory, as well as other entities in the local environment, to form
an opinion of how the autonomous system will behave. In the longer-term, standards and norms that
govern these interactions may be defined or emerge: the use of audible alarms when a vehicle is reversing
may be one example. However, currently, these interactions need careful thought from the perspective of
each autonomous system.

Examples: To understand what interfaces are required, and what characteristics would make these
appropriate (or inappropriate), there is a need to understand the range of situations in which people

7 PLATFORM-LEVEL FRAMEWORK: OBJECTIVES

47

48

7/ PLATFORM-LEVEL FRAMEWORK: OBJECTIVES

will interact with the platform. Many of these situations should be identified as part of understanding
the platform's behavioural specification, including what constitutes safe operation (Objective PLT1-2). In
addition, there may be a need to search for other interactions with people that do not naturally arise
from such considerations. This could possibly be achieved by “walking through” typical use cases for the
platform, with the specific aim of identifying interactions with people. This should consider both pull-style
interfaces, where the person has to request information, and push-style interfaces, where the information
is always provided.

As well as understanding the situations where interactions occur, there is also a need to understand
the different types of people that may be involved. For example, the interface provided to a child may
be different from that provided to an adult. Similarly, the interface provided to a native speaker may
be different from that provided to someone unfamiliar with that language. To give one final example,
the interface provided to a trained (and certified) operator may be different from that provided to a lay
person. Many of these considerations may be addressed by traditional Human-Machine Interface (HMI)
approaches.

Provided it was sufficiently realistic (and demonstrated to be so), an interactive simulation could be a useful
tool to help develop the understanding discussed in the preceding paragraphs.

These traditional approaches may need to be supplemented with techniques associated with “Explainable
Al"[1]. In this context, there is a difference between local explainability, which relates to a single input, and
global explainability, which relates to the input domain (or a large portion of it). As outlined in the preceding
paragraph, there is also a need to account for the context within which the explanation is provided, or
required.

PLT3-3: Appropriate training is provided for platform users and maintainers.

Discussion: A key aspect of many autonomous systems is that they change the role of the human. This
change in role means that additional training is likely to be beneficial; furthermore, a different form of
training may also be helpful. More specifically, even though autonomy typically reduces the burden on
the human there may still be a need to train operators: this could, for example, involve education about
expected platform behaviour in both nominal and off-nominal situations. Similarly, some form of training
may be required for maintainers, for example, being able to manage updates of ML-based models.

Examples: Training for users and maintainers is likely to be platform-specific. As for traditional systems,
there may be a need for formal certification and, potentially, re-certification.

The nature of ML-based models is such that autonomous systems may be updated more frequently than
is typically the case for current systems. This raises the importance of considering the impact of individual
changes and, especially, the cumulative impact of multiple changes. A time-based approach to re-training,
combined with a time-based bound on the scale and number of changes, could be adopted. Alternatively, a
metric that estimates the cumulative effect of multiple changes could be developed, with re-training being
invoked once that metric exceeds a threshold. In either case, care need to be taken to protect against a
conscious or unconscious desire to minimise re-training (e.g., to minimise opertaional costs) to such an
extent that platform operation becomes unsafe.

PLT3-4: The platform is appropriately protected against harm from adversarial actors.

Discussion: The possibility of people intending to deliberately cause the platform to behave in an unsafe

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

manner needs to be considered. Given the extensive use of software and computational hardware in
autonomy-enabling technologies, there is a significant cyber-related attack surface that adversaries may
seek to exploit.

However, this objective is intentionally wider than cyber-related considerations; it also includes other
activities that humans could take that affect platform behaviour, especially for effects that have
the potential to lead to unsafe behaviour. One example activity could be pedestrians and cyclists
positioning themselves to try and influence vehicle trajectories. Another example could be platform users
implementing unauthorised modifications, perhaps with the aim of altering a vehicle's performance.

Examples: The potential scope of this objective is vast. From a cyber security perspective, the DfT
Guidelines for Cyber Security for Connected and Automated Vehicles are likely to be useful [23]. Likewise,
the combined development of a security case and a safety case may help [48].

From the specific perspective of autonomy-enabling technologies, protecting against the possibility of
training abuse (e.g., via data poisoning or through tainted pre-trained models [37]) is important. Coupling
this with monitoring of operational inputs and autonomous (or model) behaviour is likely to be beneficial.
These concepts are also relevant to the autonomy architecture-level (e.g., Objectives ARC1-2 and ARC1-4).

An understanding of potential non-cyber effects may be gained, at least in theory, by a suitably broad red
teaming exercise [50]. Like all red team exercises, this would require a group of innovative thinkers; itis also
likely to require people with a good understanding of how the platform would respond to novel situations.
Given the wide potential behaviour associated with many autonomous systems, this understanding may be
difficult to obtain. It could, possibly, be replaced by appropriate tests (including simulations). Adopting this
approach could result in a series of red team sessions, in which possible adversary actions are proposed,
with the results of these being determined offline and fed back into a subsequent session.

If a suitable simulation was available, which included representations of the platform and adversarial actors,
then there may be value in adopting some form of automated red teaming.

7.4 Environment

A key aspect of many autonomous systems is the complex, diverse and dynamic nature of the intended
operational domain. These characteristics mean it is impossible to precisely define beforehand what
entities will be present in the environment or how they will behave. The environment projection is
concerned with these entities, which the platform developer and operator have little or no control over, as
well as geographical and meteorological properties.

There are two objectives associated with this projection.

PLT4-1: Elements of the environment relevant to the safe operation of the platform are
identified and understood.

Discussion: In order to make arguments about, and demonstrate, the safe operation of a platform it
is necessary to understand the environment in which the platform may be used, noting that this is not
necessarily the same as the intended operational domain. Part of this understanding is concerned with
interacting items (Objective PLT2-1) although the most significant part comes from understanding entities
that may be present in, and properties of, the environment.

7 PLATFORM-LEVEL FRAMEWORK: OBJECTIVES

49

50

7/ PLATFORM-LEVEL FRAMEWORK: OBJECTIVES

Examples: In some cases, an understanding of the environment may be relatively easy to establish. This
may be the case for an autonomous system that forms part of an application to support medical diagnoses.
More generally, the approaches used to understand what constitutes safe behaviour (Objective PLT1-2)
and what interacting items may affect safety (Objective PLT2-1) are likely to help identify elements of the
environment that are relevant to this objective.

It is important that the environment is described and understood in an inclusive manner, without
jeopardising understandability. In some cases, it may be plausible to list all entities within a given class
(or sub-class) that may form part of the environment. Existing classifications, for example, of road vehicles,
may help in this endeavour. In other cases it may be appropriate to define parts of the environment by
exclusion; that is, the environment may contain everything apart from certain specified items.

The understanding of the environment needs to consider both nominal (i.e., expected) and off-nominal (i.e.,
unexpected) situations. The presence of emergency vehicles, or broken down vehicles may be examples
of the latter class. It may be helpful to develop a range of situations that apply to an entire class of
autonomous systems: for example, regardless of manufacturer, self-driving cars (operating in the same
geographical region) are likely to experience the same, or very similar, environments.

In terms of geographical and meteorological properties of the environment, bounds are likely to be
available from system-level requirements. These should, for example, identify minimum and maximum
operating temperatures. If it is relevant, they may also specify bounds on properties like altitude, vibration,
acceleration, gradient, and so on.

The potential effect of environmental properties on redundancy needs to be understood. For example,
suppose a platform is fitted with a range of sensors to provide redundancy, but some of the sensors do
not function adequately in certain meteorological conditions (e.g., fog). In such circumstances, fog may not
immediately create an unsafe situation, although it may reduce safety margins. This could create a case
where a single failure resulted in unsafe operation, even though from a theoretical perspective the platform
was equipped with redundant sensors.

PLT4-2: Situational awareness of the platform’s environment is maintained.

Discussion: Situational awareness relates to the platform’'s understanding of the environment. This
includes understanding what other entities exist, what courses of action these entities are likely to take
and what courses of action they could potentially take in a worst case (from a safety perspective) scenario.
This awareness is important as it forms the basis of decision making: making a correct decision based on
incorrect data could lead to unsafe outcomes.

The importance of situational awareness is also emphasised in the first two components of common
models for autonomous systems, for example: Monitor, Analyse, Plan, Execute (MAPE); and Sense,
Understand, Decide, Act (SUDA).

Examples: For some platforms, maintaining situational awareness may be relatively straightforward. For
example, in the case of a medical diagnosis system, the associated environment could include data about
the image (e.g., the type of scanner used, the time and date at which the image was taken, an associated
patient identifier); it could also include general healthcare information relevant to the patient (e.g., current
medication). For other platforms, maintaining suitable awareness of the environment (in all operating
conditions) could be a significant challenge.

Some aspects of situational awareness may come from off-platform sources: mapping information may

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

be a good example of this. Ensuring that safety-related impacts of such data have been considered is
important. The Data Safety Guidance may be valuable in this regard [79].

Other aspects of situational awareness may be more dynamic. Understanding the current meteorological
conditions is likely to be important. As noted earlier these could, potentially, reduce safety margins. The
impact of meteorological conditions on the environment also need to be considered: a wet or icy road
surface will affect braking distances, for example.

To understand what level of situational awareness is required, analysis needs to be conducted to
understand, for example, the accuracy and latency with which information is required. The control
structure diagram (associated with STPA [46]) may help identify the relevant pieces of information;
subsequent analyses could provide details of the properties this information needs to exhibit.

In many cases, the environment changes relatively smoothly with time. Consequently, there may be a need
to measure and propagate uncertainty about the environment and, especially, entities within it. This may
allow the platform to adopt certain behaviours to either reduce this uncertainty (e.g., by changing the way
sensors are used) or to reduce the potential consequences of it (e.g., by travelling more slowly).

7 PLATFORM-LEVEL FRAMEWORK: OBJECTIVES

51

IZS

7 PLATFORM-LEVEL FRAMEWORK: OBJECTIVES

yue|q Ajleuonuaiul st aded siyl

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

8 Summary

For ease of reference, this section lists the objectives discussed earlier.

8.1 Computation-Level

Table 5: Computation-Level Objectives

[¢] Objective Projection ‘
COM1-1 Data is acquired and controlled appropriately.
COM1-2 Pre-processing methods do not introduce errors. .
Experience
COM1-3 Data captures the required algorithm behaviour.
COM1-4 Adverse effects arising from distribution shift are protected against.
COM2-1 Functional requirements imposed on the algorithm are defined and satisfied.
Non-functional requirements imposed on the algorithm are defined and
COM2-2 .
satisfied.
COM2-3 Algorithm performance is measured objectively. Task
COM2-4 Performance boundaries are established and complied with.
COM2-5 The algorithm is verified with an appropriate level of coverage.
COM2-6 The test environment is appropriate.
COM2-7 Each algorithm variant is tested appropriately.
COM3-1 An appropriate algorithm type is used.
COM3-2 Typical errors are identified and protected against.
yp P 5 Algorithm
COM3-3 The algorithm's behaviour is explainable.
COM3-4 Post-incident analysis is supported.
COM4-1 The software is developed and maintained using appropriate standards.
Software
COM4-2 Software misbehaviour does not result in incorrect outputs from the algorithm.
COM5-1 Appropriate computational hardware standards are employed.
Hardware
COM5-2 Hardware misbehaviour does not result in incorrect outputs from the algorithm.

53

54

8 SUMMARY

8.2 Autonomy Architecture-Level

Table 6: Autonomy Architecture-Level Objectives

[Objective Projection ‘
ARC1-1 Failures of sub-systems that provide computation inputs are tolerated.
ARC-D Operational inputs inconsistent with the training, test and verification data are
tolerated. Tolerance
ARC1-3 Faults and failures internal to the computation are tolerated.
ARC1-4 Adversarial attempts to disrupt the computation are tolerated.
ARC1-5 Incorrect computation outputs are tolerated.
ARC2-1 Relevant information is presented to interacting parties.
Relevant information is available to support maintenance and future Information
ARC2-2 Provisi
development. rovision
ARC2-3 Relevant information is preserved to support post-incident analysis.
ARC2-4 Information is managed securely.
ARC3-1 Inappropriate or unauthorised adaptations do not occur.)
Adaptation
ARC3-2 Computation behaviour is appropriate before, during and after an adaptation.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

8.3 Platform-Level

Table 7: Platform-Level Objectives

[Objective Projection ‘
PLT-1 All aspects of platform behaviour that are achieved using autonomy-enabling
techniques are justified.
PLT1-2 Acceptably safe operation for the platform is defined.
PLT1-3 The specified behaviour of the platform is predictable, consistent and safe. Behavioural
At
The specified behaviour is safe in the presence of faults and failures, as well as Specification
PLT1-4)
foreseeable misuse and abuse.
PLT1-5 The behaviour of the platform is verified.
PLT1-6 Operational monitoring is sufficient to identify and support the mitigation of new
hazards, including emerging cyber security threats.
PLT2-1 Interacting items that affect the safe operation of the platform are identified and
understood.
PLT2-2 Interactions preserve platform safety. Interacting Items|
PLT2-3 Unavailability or unreliability of interacting items does not make the platform
unsafe.
PLT3-1 Safety-related demands on people interacting with the platform are reasonable.
PLT3-2 Suitable interfaces are provided for people that may interact with the platform. People
PLT3-3 Appropriate training is provided for platform users and maintainers.
PLT3-4 The platform is appropriately protected against harm from adversarial actors.
Elements of the environment relevant to the safe operation of the platform are
PLT4-1 , o
identified and understood. Environment
PLT4-2 Situational awareness of the platform's environment is maintained.

8 SUMMARY

55

56

8 SUMMARY

This page is intentionally blank

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Appendix A Computation-Level Framework: Justification

This appendix summarises the process used to develop the computation-level framework adopted by the
SASWG. In doing so, it provides some justification for the choice of framework. It also provides some
confidence that the framework covers all relevant topic areas.

Initially, a small-scale survey of existing computation-level frameworks was conducted. This identified the
items listed in Table 8.

Table 8: Computation-Level Frameworks Considered

Section ‘ Framework ‘
A1 Modified Software Safety Assurance Principles
A1.2 The “Faria Stack”
A13 Douthwaite and Kelly's “Viewpoints”
Al4 Google's Machine Learning Rubric
A15 Ethical and Safety Principles
A1.6 Burton's “Making the Case” Argument

Each computation-level framework is briefly summarised (subsection A.1) and a preferred framework is
selected. A top-level mapping between frameworks is completed, to confirm that the chosen framework
incorporates all relevant parts of the other computation-level frameworks (subsection A.2). Similar,
top-level mappings from the chosen framework to, firstly, a typical software development approach and,
secondly, a generic approach to ML-based development are conducted; these demonstrate the framework
provides appropriate coverage of typical development activities (subsection A.3).

A.1 Computation-Level Frameworks

A.1.1 Modified Software Safety Assurance Principles

This computation-level framework is described in a paper presented at the 2017 SSS [8]. The
paper considers the “four plus one” software safety assurance principles [42] from the perspective of
non-traditional (e.g., ML / Al) software. A slightly revised and extended set of six (or “four plus two")
principles are proposed:

e Principle One: Software safety requirements shall be defined to address the software contribution to
system hazards;

e Principle Two-Primed: The software detailed design shall embody the intent of the software safety
reguirements,

e Principle Three: Software safety requirements shall be satisfied;
e Principle Four: Hazardous behaviour of the software shall be identified and mitigated;

e Principle Four plus One: The confidence established in addressing the software safety principles shall
be commensurate to the contribution of the software to system risk;

57

e Principle Four plus Two: Software required to produce behaviour not predictable at design time
should consider the consequence of behavioural adaptations on its environment.

A.1.2 The “Faria Stack”

This computation-level framework is based on the information presented in a paper at the International
Symposium on Software Reliability Engineering (ISSRE) Workshop on Software Certification (WoSoCer) [30].
This framework comprises five projections:

e Experience, which is focused on the data that is available to train a machine learning algorithm;

Task, which is concerned with the performance of the implemented computation;

Algorithm, which considers the type of algorithm (e.g., neural network, random forest, etc.);

Software, which includes considerations such as the language in which the computation is
implemented;

Hardware, which relates to the computational hardware that is used.

A COMPUTATION-LEVEL FRAMEWORK: JUSTIFICATION

When using this framework it may be helpful to consider, at least, the Software and Hardware projections
from two perspectives, specifically training and operational use. For example, it is likely that the
computational hardware used for training will be different to that used during an operational deployment.

A.1.3 Douthwaite and Kelly’'s “Viewpoints”

This computation-level framework was presented at the 2018 SSS [26]. Building on the concept of distinct
viewpoints used in systems engineering, this paper identifies six viewpoints. Although they were developed
from the perspective of Bayesian Networks, the paper suggests the viewpoints are applicable to many types
of artificial intelligence software. The viewpoints are:

e Model, which relates to the structure and parametrisation of the model underlying the learnt
algorithm;

e Data, which covers all data acquisition, processing and storage concerns (including knowledge
engineering and expert elicitation);

e Computational, which includes the properties of all algorithms used for learning and reasoning tasks
within the system, their selection process, and the associated assumptions and design decisions;

e Operational, which focuses on the evolution and maintenance of the system after deployment;

e Technology, which covers the necessity, properties, constraints and assumptions of modelling
frameworks used in the system;

e Implementation, which addresses all “conventional” software and hardware engineering concerns,
including “normal” function allocation, requirements and associated verification and validation
activities.

As with the “Faria Stack” considered above, there may be advantages in considering some of the above
58 viewpoints from both training and operational perspectives.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

A.1.4 Google’s Machine Learning Rubric

This computation-level framework [13] includes a scoring mechanism that is intended to measure how
suitable a machine learning approach is for deployment. It is based on computations used in a web-like
environment, but may be of relevance to wider autonomous systems.

The framework includes four categories, each of which includes several considerations:

e Tests for Features and Data:

Test that the distributions of each feature match your expectations;

Test the relationship between each feature and the target, and the pairwise correlations
between individual signals;

Test the cost of each feature;

Test that a model does not contain any features that have been manually determined as
unsuitable for use;

Test that your system maintains privacy controls across its entire data pipeline;
Test the calendar time needed to develop and add a new feature to the production model;

Test all code that creates input features, both in training and serving.

e Tests for Model Development:

Test that every model specification undergoes a code review and is checked in to a repository;
Test the relationship between offline proxy metrics and the actual impact metrics;

Test the impact of each tunable hyper-parameter;

Test the effect of model staleness;

Test against a simpler model as a baseline;

Test model quality on important data slices;

Test the model for implicit bias.

e Tests for ML Infrastructure:

Test the reproducibility of training;

Unit test model specification code;

Integration test the full ML pipeline;

Test model quality before attempting to serve it;

Test that a single example or training batch can be sent to the model, and changes to internal
state can be observed from training through to prediction;

Test models via a canary process before they enter production serving environments;

Test how quickly and safely a model can be rolled back to a previous serving version.

e Monitoring Tests for ML:

Test for upstream instability in features, both in training and serving;
Test that data invariants hold in training and serving inputs;
Test that your training and serving features compute the same values;

Test for model staleness;

A COMPUTATION-LEVEL FRAMEWORK: JUSTIFICATION

59

A COMPUTATION-LEVEL FRAMEWORK: JUSTIFICATION

60

- Test for Not a Number (NaN) or infinities appearing in your model during training or serving;

- Test for dramatic or slow-leak regressions in training speed, serving latency, throughput, or
Random Access Memory (RAM) usage;

- Test for regressions in prediction quality on served data.

For each item above, one point is awarded for manual tests (including documenting and distributing the
results). A second point is awarded if tests are run automatically and repeatedly. A score is calculated for
each of the four categories by adding the scores for each of the listed items. The overall score is then the
minimum of these four category scores.

A.1.5 Ethical and Safety Principles

This computation-level framework identifies a perspective on the ethics governing decisions around
safety-critical autonomous systems [58]. It aligns with the Modified Software Safety Assurance Principles
(discussed above) and is applicable to ethics only so far as these affect safety.

e Principle One: Ethics requirements governing the autonomous system behaviour shall be defined.
e Principle Two: The intent of the ethics requirements shall be maintained throughout decomposition.
e Principle Three: Ethics requirements shall be satisfied.

e Principle Four: The autonomous system shall continue to be safe, and emergent behaviour of the
autonomous system which conflicts with the ethics requirements shall be identified and mitigated

e Principle Four plus One: The degree of rigour required to address these ethical principles shall be
commensurate with the contribution of the autonomous system to system risk.

A.1.6 Burton's “Making the Case” Argument

This computation-level framework comes from a paper presented at the 2017 International Conference
on Computer Safety, Reliability, and Security [14]. The paper outlines an assurance case structure for a
highly automated driving system, which could possibly be extended to cover a wide range of autonomous
systems. A Goal Structuring Notation (GSN) approach is used; key features include:

e GOAL G1: The residual risk associated with functional insufficiences in the object detection function
is acceptable;

e CONTEXT C1: Definition of functional and performance requirements on the object detection
function;

e ASSUMPTION A1: Assumptions on the operational profile of the system’s environment;
e ASSUMPTION A2: Assumptions on attributes of inputs to the machine learning function;
e ASSUMPTION A3: Assumptions on the performance potential of machine learning;

e STRATEGY S1: Argument over causes of functional insufficiencies in machine learning;

e SUBGOAL G2: The operating context is well defined and reflected in training data;

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

SUBGOAL G3: The function is robust against distributional shift in the environment;

SUBGOAL G4: The function exhibits a uniform behaviour over critical classes of situations;

SUBGOAL G5: The function is robust against differences between its training and execution platforms;

SUBGOAL G6: The function is robust against changes in its system context.

A.2 Framework Mappings

Following discussions®, the SASWG selected the “Faria Stack” as the basis for the computation-level
framework. The following paragraphs briefly discuss each projection of the “Faria Stack”, taking into account
the other frameworks outlined in the preceding subsection. Within these discussions:

e For reasons of brevity, only the top-level of Google's Machine Learning Rubric is considered.

e Due to their similarity to the Modified Software Safety Assurance Principles, the Ethical and Safety
principles are not explicitly considered.

e For simplicity, only the goals and subgoals are considered from Burton’s “Making the Case” Argument.

The discussions also include a “Not Addressed” pseudo-projection, which captures considerations that
do not readily relate to any of the projections. By checking the contents of this pseudo-projection, and
confirming that it contains nothing significant, confidence can be gained that the adopted framework
covers all relevant topics.

A.2.1 Experience

Consideration of the data used to develop the algorithm directly relates to Douthwaite and Kelly's Data
viewpoint, and also to the Tests for Features and Data category from Google's Machine Learning Rubric.

The way the data reflects the operating context directly relates to Subgoal G2 from Burton’s “Making the
Case” Argument.

A.2.2 Task

Understanding the task should also include understanding the way it contributes to the wider system and,
also, any associated computation (or software) safety requirements. This consideration relates to Principle
One of the Modified Software Safety Assurance Principles.

Performance measurement against the intended task ought to include explicit measures against
requirements (including safety requirements). It also ought to consider whether the computation has
introduced any new hazards. These considerations relate to Principles Three and Four of the Modified
Software Safety Assurance Principles. They also relate to Goal G1 from Burton's “Making the Case”
Argument.

More generally, performance management relates to the Tests for Model Development category from
Google's Machine Learning Rubric.

4 SASWG 7,17 April 2018, York.

A COMPUTATION-LEVEL FRAMEWORK: JUSTIFICATION

61

62

A COMPUTATION-LEVEL FRAMEWORK: JUSTIFICATION

The properties of the operationally-fielded computation relate to Douthwaite and Kelly's Computational
viewpoint.

A.2.3 Algorithm

The link between choice of algorithm and intended task mirrors the link between requirements (including
safety requirements) and detailed design. This relates to Principle Two-Primed of the Modified Software
Safety Assurance Principles.

Part of choosing a specific algorithm also includes choosing hyper-parameters (e.g., number of nodes
and layers in a neural network). This relates to Douthwaite and Kelly's Model viewpoint. More general
algorithm-related choices relate to Douthwaite and Kelly's Computational viewpoint.

A.2.4 Software

The choice of software (for both development and operational use) is part of detailed design. This relates
to Principle Two-Primed of the Modified Software Safety Assurance Principles. It also relates to Douthwaite
and Kelly's Technology and Implementation viewpoints, and also to the Tests for ML Infrastructure category
from Google’s Machine Learning Rubric.

A.2.5 Hardware

The choice of hardware (for both development and operational use) is part of detailed design. This relates
to Principle Two-Primed of the Modified Software Safety Assurance Principles, to Douthwaite and Kelly's
Implementation viewpoint, and also to the Tests for ML Infrastructure category from Google's Machine
Learning Rubric.

The possibility of different behaviour on development (training) and operational (execution) platforms
relates to Subgoal G5 from Burton's “Making the Case” Argument.

A.2.6 Not Addressed

The chosen computation-level framework does not readily address Principle Four plus One of the Modified
Software Safety Assurance Principles: “The confidence established in addressing the software safety
principles shall be commensurate to the contribution of the software to system risk”. This is not a significant
concern as this principle is a cross-cutting issue for all assurance, and thus not something that has to be
specifically addressed at the computation level.

Likewise, the framework does not readily address Principle Four plus Two: “Software required to produce
behaviour not predictable at design time should consider the consequence of behavioural adaptations
on its environment.”. This is not a significant concern as adaptation is considered at the autonomy
architecture-level (Section 4).

From the perspective of Douthwaite and Kelly's “Viewpoints” the chosen computation-level framework
does not readily address the Operational viewpoint. This is more readily addressed at the autonomy
architecture-level and the platform-level (Section 4 and Section 6, respectively).

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Similarly, the Monitoring Tests for ML category from Google's Machine Learning Rubric are addressed at
other framework levels, as is Subgoal G3 from Burton's “Making the Case” Argument.

Finally, the chosen computation-level framework does not readily address Subgoal G4 of Burton's “Making
the Case” Argument: “The function exhibits a uniform behaviour over critical classes of situations”. It is
not immediately clear whether this, especially the “uniform behaviour” part, is a generic requirement that
should be satisfied by every computation. If it is a requirement for a particular application then it should
be addressed by the Task projection (via the relationship to Principle One of the Modified Software Safety
Assurance Principles).

A.2.7 Relationship Summary

For ease of reference, the relationships outlined above are summarised in Table 9. Note that this
presentation is deliberately simple and top-level.

Table 9:
Considered

Relationships between Computation-Level Frameworks

Modified Software Douthwaite and Burton’s “Making

Google's Machine

Stack Level Safety Assurance Kelly's .) the Case”
. . . . Learning Rubric
Principles “Viewpoints"” Argument
Tests for Features
Experience - Data Subgoal G2
P and Data 8
Principles One, Three) Tests for Model
Task ncip Computational Goal G1
and Four Development
Model and
Algorithm Principle Two-Primed . -
Computational
Technol d Tests for ML
Software Principle Two-Primed echnology a.n e for
Implementation Infrastructure
Tests for ML
Hardware Principle Two-Primed Implementation Subgoal G5
Infrastructure
Principle Four plus L
Monitoring Tests for
Not Addressed One, Principle Four Operational : //\/lgL I Subgoal G4
plus Two

Overall, the preceding analysis indicates that, based on the selected comparator frameworks, there are no

significant omissions from the chosen computation-level framework.

A.3 Software and ML Development Mappings

Table 10 maps the framework's projections to the activities involved in a generic software development

[87].

This mapping shows that the chosen computation-level framework is sufficiently complete to address

typical software development activities.

A COMPUTATION-LEVEL FRAMEWORK: JUSTIFICATION

63

A COMPUTATION-LEVEL FRAMEWORK: JUSTIFICATION

64

Table 10: Mapping Projections to Typical Software Development

‘Experience‘ Task ‘ Algorithm Software ‘ L ETANTET ‘
Plan Y
Requirements Y
Design Y Y Y
Implement Y Y Y Y Y
Test Y
Transition Y Y

To provide further confidence, Table 11 maps the projects to the steps that are required to produce a
useful ML-based computation [84]. This mapping demonstrates the framework fits well with development
in an ML context, with most development steps mapping to a single projection.

Table 11: Mapping Projections to Typical ML Development

Experience Task Algorithm Software | Hardware
Frame the question Y
Collect data Y
Select features Y
Choose algorithm Y
Choose metrics Y
Conduct experiment Y Y
Interpret results Y

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Appendix B Computation-Level Objectives: Justification

This appendix provides some additional justification for the computation-level objectives listed in the main
body. This is achieved by mapping those objectives to separately published material, specifically:

e Asuggested list of requirements for a standard to support the use of NNs in safety-critical applications
[10]. This source dates from 1996. Consequently, it provides a sound theoretical basis, independent
from recent trends, against which computation-level objectives can be compared. However, its
considerations do not encompass the latest research directions. In addition, whilst many of its
requirements are applicable to a number of ML approaches, they have been derived in the specific
context of NNs.

e An analysis of gaps in a current automotive standard with regards to the use of ML approaches
[72]. This source dates from 2018, so it encapsulates recent research. However, the chosen
standard, specifically International Organization for Standardization (ISO) 26262 [47] is a functional
safety standard; that is, it only addresses unsafe behaviours caused by system malfunctions. For ML
approaches, there is also a need to consider the Safety Of The Intended Function (SOTIF).

For the reasons outlined above, the computation-level objectives derived by the SASWG would not be
expected to directly match the contents of either reference. Nevertheless, the objectives would be
expected to cover all relevant issues raised in the reference material.

It is emphasised that the mappings established below are top-level and approximate. This is considered
appropriate as the mappings are intended to justify (or, if necessary, refine) the computation-level
objectives. More specifically, the mappings discussed in this appendix were not a key part of the process
by which the computation-level objectives were derived.

B.1 Requirements for a NN Standard

Table 12 lists the requirements noted in [10]. Note that these requirements use the term Artificial Neural
Network (ANN), rather than NN, which is preferred in the current document. Where appropriate, relevant
computation-level objectives are highlighted. If no objectives are relevant, justification for this is provided.

Table 12: Computation-Level Objectives Compared against
Requirements for a NN Standard

Standard Requirement ‘ Relevant Objectives

Specify how the high-level goals of, or requirements for, the ANN module

COM2-1, COM2-2
are to be obtained

Specify what should be done to ensure that the training data adequately

COM1-3
represent the attainment of the high-level goals

Specify what type of networks can be used, and how each type is to be

M3-1
unambiguously designated cOM3

Specify how the input-output characteristics are to be unambiguously

, COM1-1, COM1-2
designated

Specify how the developer must describe the way in which the

. ‘ . COM2-3
performance function for the network operates during training

65

B COMPUTATION-LEVEL OBJECTIVES: JUSTIFICATION

Standard Requirement Relevant Objectives

Specify what details the ANN developer must provide regarding the way in

Out of scope: Autonomy architecture-level
which the ANN module interfaces with the rest of the system f scop Y

Specify the extent of knowledge, relating to neural networks, required of

Out of scope: Staffin,
management and development team personnel f scop fiing

Specify what development model is to be used for the ANN module COM5-1

Specify any outputs which the ANN module is required to produce in

o . . ‘ COM2-1
addition to its primary functional output

Specify whether formal methods or rigorous argument are to be used to

COM4-1, COM4-2
develop the software which implements the neural network

Specify what methods are to be used for quality assurance in the trained

COM1-1, COM4-1, COM5-1
network

Specify that the Verification and Validation (V&V) team should use
generalisation tests on the trained network to verify that it has learned the COM2-3, COM2-6, COM2-7
principles implicit in the training data

Specify that the V&V team should validate a Safety-Critical Artificial Neural
Network (SCANN) by investigating the behaviour of the SCANN over the COM2-5
whole of the input space

Specify how the developers should check that the initial safety
assessments made for the system are not affected by the ANN module
and how failures in other modules would affect the system, given the
intended operation of the ANN

Out of scope: Platform-level

Out of scope: Autonomy architecture-level
(supported by COM1-4, COM2-4,
COM3-2, COM5-2, COM5-2)

Specify that developers establish possible failure modes of the ANN
module itself and the consequences

Specify how HAZOP is to proceed, regarding the operation of network Out of scope: Platform-level

Specify the brief and form of the HAZOP committee, as well as guide words

Out of scope: Platform-level
for their use f scop f

Specify that a certification standard should insist that the developers build
the network is such a way that the necessary data are available so that it is COM3-3, COM3-4
possible to do Failure Mode and Effects Analysis (FMEA) and HAZOP

It is apparent that all relevant requirements established by [10] are covered by one or more of the
computational objectives derived by the SASWG. This provides further confidence in the identified
computation-level objectives.

B.2 ML-Related Gaps in an Automotive Standard

The analysis of ISO 26262 identified a number of impacted or new Process Requirements (PRs). The
associated phase and description are reproduced (from [72]) in Table 13. Relevant computation-level
objectives are then highlighted; if there are no such objectives then justification is provided.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Table 13: Computation-Level Objectives Compared against Impacted or

New PRs
Phase ‘ Description Relevant Objectives ‘
(5) Initiation Best practices: coding guidelines COM3-2, COM4-1
(5) Initiation ML decision gate Out of scope: Autonomy architecture-level

(6) Software safety
requirements

Requirements specification

COM1-3, COM2-1, COM2-2

(6) Software safety
requirements

Requirements verification

COM2-3, COM2-5

(7) Architectural design

Fault tolerance

Out of scope: Autonomy architecture-level

(8) Software unit design,
implementation

Best practices: notations

COM3-2, COM4-1

(8) Software unit design,
implementation

Best practices: design principles

COM3-2

(8) Software unit design,
implementation

Best practices: data set collection and
verification

COM1-1, COM1-2

(8) Software unit design,
implementation

Best practices: model selection

COM3-1

(8) Software unit design,
implementation

Best practices: feature selection

COM1-3

(8) Software unit design,
implementation

Best practices: training

COM3-2, COM4-1, COM5-1

(8) Software unit design,
implementation

Best practices: data set splitting

Out of scope: Approach-specific

(8) Software unit design,
implementation

Best practices: validation

COM2-3, COM3-2

(8) Software unit design,
implementation

Best practices: testing

COM2-3, COM2-7, COM4-2, COM5-2

(8) Software unit design,
implementation

Best practices: testing structural coverage

COM2-5

(8) Software unit design,
implementation

Best practices: test vs. operating
environment

COM1-4, COM2-6, COM4-1

(8) Software unit design,
implementation

Best practices: test result explanation

COM3-3, COM3-4

(8) Software unit design,
implementation

Best practices: verification

COM2-3, COM2-4, COM2-5, COM2-6,
COM3-4

It is apparent that all impacted or new PRs established by [72] are covered by one or more of the

computational objectives derived by the SASWG, or are intentionally outside the scope of this framework.

This, again, provides further confidence in the computation-level objectives.

B COMPUTATION-LEVEL OBJECTIVES: JUSTIFICATION

67

B COMPUTATION-LEVEL OBJECTIVES: JUSTIFICATION

|89

yue|q Ajleuonuaiul st aded siyl

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Appendix C Platform-Level Framework: Justification

This appendix provides a brief, outline survey of platform-level frameworks that could be used to structure
thinking about the safety (or assurance) of autonomous systems. For ease of reference, Table 14 lists the
frameworks that are considered.

Table 14: Platform-Level Frameworks Considered

Section ‘ Framework ‘
C1. Waymo's System Safety Report
C1.2 The Twelve Safety Elements from the NHTSA
C13 HORIBA MIRA Framework
C1.4 Uber Advanced Technologies Group
C1.5 AAIP BOK
C1.6 Al Safety Landscape Categories

Each platform-level framework is briefly summarised (subsection C.1) and a preferred framework is
developed. A top-level mapping between frameworks is completed, to confirm that the chosen framework
incorporates all relevant parts of the other platform-level frameworks (subsection C.2).

C.1 Platform-Level Frameworks

C.1.1 Waymo's System Safety Report

This platform-level framework comes from Waymo's System Safety Report®. This report establishes five
distinct safety areas:

e Behavioural safety, which is about the behaviour of the vehicle on the road, including the decisions it
makes. This is the most novel of the safety areas.

e Functional safety, which considers how the system operates in the presence of faults and failures.
This appears to be standard system safety, including the use of redundant sub-systems, for example.

e Crash safety, which is about protecting people in the event of a crash. This appears to be normal
automotive crash safety.

e Operational safety, which covers the interaction between Waymo vehicles and their passengers. This
seems to be mainly focused on the user interface, which includes helping the passenger understand
what the vehicle is perceiving and what it is doing on the road.

e Non-collision safety, which considers how the vehicle could harm those it interacts with in non-crash
situations (including passengers, first responders and bystanders).

5 https:/storage.googleapis.com/sdc-prod/vi/safety-report/waymo-safety-report-2017-10.pdf.

69

70

C PLATFORM-LEVEL FRAMEWORK: JUSTIFICATION

C.1.2 The Twelve Safety Elements from the NHTSA

This platform-level framework comes from “Automated Driving Systems 2.0: A Vision for Safety”, published
by the US National Highway Traffic Safety Administration (NHTSA)®. This introduces twelve “safety elements”:

1. System Safety;

2. Operational Design Domain;

3. Object and Event Detection and Response;

4. Fallback (Minimum Risk Condition);

5. Validation Methods;

6. Human Machine Interface;

7. Vehicle Cybersecurity;

8. Crashworthiness;

9. Post-Crash Automated Driving System (ADS) Behaviour;
10. Data Recording;
11. Consumer Education and Training;

12. Federal, State and Local Laws.

C.1.3 HORIBA MIRA Framework

This platform-level framework is described in an HORIBA MIRA presentation [12]. The presentation
describes an Autonomous Driver (AD); the following bullets summarise the high-level, generic features
of the framework.

e STRATEGY: Argument split according to functionality that is intended, unintended and due to
malicious intent.

e CLAIM: Intended Behaviour - The absence of unreasonable risk associated with the intended
behaviour of the [autonomous system] has been achieved.

- STRATEGY: Argument structured by the rationale for, and satisfaction of, specified requirements
(REQs).

- CLAIM: Requirements Rationale - Meeting the REQs yields the absence of unreasonable risk
associated with the intended behaviour of the [autonomous system].

- CLAIM: Requirements Satisfaction - The [autonomous system] behaves according to the REQs.
(In this area, the framework also introduces: virtual testing; physical testing; and testing diversity
and number.)

e CLAIM: Malfunctioning Behaviour - The absence of unreasonable risk associated with malfunctioning
behaviour of the [autonomous system] has been achieved.

e CLAIM: Malicious Intent - The absence of unreasonable risk associated with malicious attack of the
[autonomous system] has been achieved.

6 https://www.nhtsa.gov/manufacturers/automated-vehicles-manufacturers.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

C.1.4 Uber Advanced Technologies Group

This platform-level framework is the safety case framework developed by Uber Advanced Technologies
Group’. This framework is intended for use with self-driving vehicles, especially passenger-carrying cars
on public roads. This is a narrower scope than the current document, which addresses all autonomous
systems. For reasons of brevity only the five top-level goals associated with this framework are listed below:

e G1 - Proficient: The Self-Driving Vehicle is acceptably safe during nominal operation.

G2 - Fail-Safe: The Self-Driving Vehicle is acceptably safe in presence of faults and failures.

G3 - Continuously Improving: Any anomaly that could affect the safety of the Self-Driving Vehicle is
identified, evaluated, and resolved with appropriate corrective and preventative actions.

G4 - Resilient: The Self-Driving Vehicle is acceptably safe in case of reasonably foreseeable misuse
and unavoidable events.

G5 - Trustworthy: The Self-Driving Enterprise is trustworthy.

C.1.5 AAIP BOK

This platform-level framework is part of the structure of the AAIP BOK [41]. This has a vast scope: it
aims to be cross-domain, cross-technology and cross-application, covering all aspects of assurance and
regulation of Robotics and Autonomous Systems (RAS). The current document has similar aims with regards
to breadth of domains, technologies and applications: however, regulation-specifics are not a focus. For
reasons of brevity only the top-level items are listed below:

Defining required behaviour.

Implementation of an RAS to provide the required behaviour.

Understanding and controlling deviations from required behaviour.

Gaining approval for operation of RAS.

Note that a more detailed, objective-level comparison between this document and the AAIP BOK is
provided in Appendix D.

C.1.6 Al Safety Landscape Categories

This platform-level framework is based on work associated with the Al Safety 2019 conference. This
presents a series of seven categories®?, one of which is underpinning and one of which is overarching.
These are illustrated in Table 15.

7
8

https://uberatg.com/safetycase/.
https://www.ai-safety.org/landscape-categories.

C PLATFORM-LEVEL FRAMEWORK: JUSTIFICATION

71

72

C PLATFORM-LEVEL FRAMEWORK: JUSTIFICATION

Table 15: Al Safety Landscape Categories

Safety-related Ethics, Security and Privacy

Runtime Process
Specification and | Verification and o Human-Machine
) L Monitoring and , Assurance and
Modelling Validation Interaction L
Enforcement Certification

Al Safety Foundations

Most of the categories are self-explanatory; the exception is Al Safety Foundations. This includes concepts
such as uncertainty and generality, as well as characteristics like levels of autonomy and safety criticality.
More generally, this category collects concerns in Al safety that span multiple other categories.

C.1.7 Choice of Framework

Whilst they provide a useful structure against which a chosen framework can be benchmarked, none of
the preceding frameworks are suitable for use by the SASWG: they are either too focused on a specific
type of platform, often a self-driving car, whereas the SASWG's work aims to cover all types of autonomous
system; or they adopt a balanced view of system safety, whereas the SASWG's work deliberately targets
aspects related to autonomy.

Consequently, having been informed by the frameworks listed above (and related items) a four-projection
framework has been developed. These projections are described detail in Section 6. For ease of reference,
a summary is provided below:

Behavioural Specification, which is about what the platform is required to do (and not do).

Interacting Items, which is about things intended or required to interact with the platform, not directly
owned by the platform developer or operator.

People, which is about how the platform interacts with people.

Environment, which is about things in the operational domain outside the control of the platform
developer or operator.

C.2 Framework Mappings

The following paragraphs discuss the relationship between the projections in the adopted framework and
the aspects of the other frameworks outlined in the preceding subsection. Given the complexity of the
items in the various frameworks, only top-level relationships are described.

The discussions also include a “Not Addressed” pseudo-projection, which captures considerations that do
not readily relate to any of the projections in the adopted framework. By checking the contents of this
pseudo-projection, and confirming that it contains nothing significant (from the perspective of the current
document), confidence can be gained that the adopted framework covers all relevant topics.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

C.2.1 Behavioural Specification

This projection relates to the Behavioural Safety, Functional Safety and Crash Safety elements from Waymao's
System Safety Report.

It also relates to five of the NHTSA Safety Elements, specifically: Object and Event Detection and Response;
Fallback (Minimum Risk Condition); Crashworthiness; Post Crash Automated Driving System Behaviour; and
Federal, State and Local Laws.

Two of the top-level elements from the HORIBA MIRA framework are also relevant, specifically: Intended
Behavior and Malfunctioning Behaviour.

The majority of the Uber Advanced Technologies Group framework is relevant to this projection. In
particular, Proficient; Fail-Safe; Continuously Improving; and Resilient are all relevant.

Likewise, the majority of the top-level items from the AAIP BOK are relevant, specifically: Defining Required
Behaviour; Implementing Required Behaviour; and Understanding and Controlling Deviations.

Finally, two of the Al Safety Landscape Categories are relevant: Specification and Modelling; and Verification
and Validation.

C.2.2 Interacting Items

No elements from any of the frameworks are directly relevant to this projection. This is because none of
the frameworks explicitly highlight the off-platform elements of the wider system. Instead, considerations
of this type are implicitly included within discussions relating to the platform. However, as indicated by the
objectives in Section 7, interacting items can have significant safety implications. Consequently, they are
deemed worthy of separate identification.

C.2.3 People

Two elements from Wayma's System Safety Report are relevant: Operational Safety; and Non-Collision
Safety.

There are three NHTSA Safety Elements that are relevant: Human Machine Interface; Vehicle Cybersecurity;
and Consumer Education and Training.

A single top-level element from the HORIBA MIRA framework is relevant, namely, Malicious Intent.

None of the top-level items in the Uber Advanced Technologies Group framework are relevant to this
projection.

Likewise, none of the AAIP BOK top-level items are relevant either.

Two of the Al Safety Landscape Categories are relevant, specifically: Safety-related Ethics, Security and
Privacy; and Human-Machine Interface.

C PLATFORM-LEVEL FRAMEWORK: JUSTIFICATION

73

C PLATFORM-LEVEL FRAMEWORK: JUSTIFICATION

74

C.2.4 Environment

The Operational Design Domain safety element from the NHTSA directly maps to this projection, as does
the Runtime Monitoring and Enforcement Al Safety Landscape category.

None of the other frameworks have items that directly map to this projection. This does not mean that
these frameworks ignore the environment; it just means that these types of consideration appear at a
lower-level, having been brigaded in a different fashion to the framework adopted by the SASWG.

C.2.5 Not Addressed

All elements from Waymo's System Safety Report are directly addressed by the collection of projections
used in the framework adopted by the SASWG.

There are three NHTSA Safety Elements that are not directly addressed: System Safety; Validation Methods;
Data Recording. The first of these is addressed by all three SASWG frameworks (i.e., by the entirety of the
current document); the other two are addressed by the Computation-Level framework (Section 2).

All elements from the HORIBA MIRA framework are directly addressed.

There is a single top-level element from the Uber Advanced Technologies Group framework that is not
directly addressed: Trustworthy. This element relates to the trustworthiness of the self-driving enterprise,
which is a much wider consideration than the safety assurance objectives of the current document.

There is also a single top-level element from the AAIP BOK that is not directly addressed: Gaining Approval.
This relates to liaison with certification authorities, which is outside the scope of the current document.

There are two Al Safety Landscape Categories that are not directly addressed, specifically: Process
Assurance and Certification; and Al Safety Foundations. The former of these is outside the scope of the
current document; the latter is a broad category that spans much of the content of the current document.

C.2.6 Relationship Summary

For ease of reference, the relationships outlined above are summarised in Table 16. Note that this
presentation is deliberately simple and top-level.

Table 16: Relationships between Platform-Level Frameworks Considered

Behavioural Interactin
Framework e s 8 People Environment | Not Addressed
Specification Items
Behavioural '
Operational
Safety,
Waymo's System , Safety,
Functional - - - B
Safety Report Non-Collision
Safety, Crash
Safety
Safety

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Framework

NHTSA Safety
Elements

Behavioural
Specification

Object and Event
Detection and
Response,
Fallback,
Crashworthiness,
Post Crash
Automated
Driving System
Behaviour,
Federal State
and Local Laws

Interacting
Items

Human Machine
Interface, Vehicle
Cybersecurity,
and Consumer
Education and
Training

Environment

Operational
Design Domain

Not Addressed

System Safety,
(Validation
Methods, Data
Recording are
computation-
level)

HORIBA MIRA

Intended
Behaviour,
Malfunctioning
Behaviour

Malicious Intent

Uber Advanced
Technologies
Group

Proficient,
Fail-Safe,
Continuously
Improving,
Resilient

Trustworthy

AAIP BOK

Defining
Required
Behaviour,
Implementing
Required
Behaviour,
Understanding
and Controlling
Deviations

Gaining Approval

Al Safety
Landscape
Categories

Specification and
Modelling,
Verification and
Validation

Safety-related
Ethics Security
and Privacy,
Human-Machine
Interface.

Process Assurance
and Certification,
Al Safety
Foundations

Overall, the preceding analysis indicates that, based on the selected comparator frameworks, there are no

significant omissions from the chosen platform-level framework.

C PLATFORM-LEVEL FRAMEWORK: JUSTIFICATION

75

I9L

C PLATFORM-LEVEL FRAMEWORK: JUSTIFICATION

yue|q Ajleuonuaiul st aded siyl

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Appendix D Comparison with AAIP Body of Knowledge

This appendix provides a high-level comparison between the objectives established in this document and
the Assuring Autonomy International Programme (AAIP) Body Of Knowledge (BOK) [41] structure.

To simplify presentation, each main section of the BOK argument structure is considered separately in the
following subsections, with relevant objectives being highlighted. Brief explanations are provided for cases
where there are no related objectives, for example, because of a difference in scope between the BOK and
this document. For example, the BOK is concerned with an argument that covers the entire system (or
platform); conversely, this document is intentionally focussed on aspects related to autonomy.

Note that the comparison reported in this appendix is deliberately high-level, with the aim of identifying
whether there are any notable omissions from the collection of objectives discussed in this document. In
particular, matching an objective to a BOK element does not necessarily mean that satisfying the objective
will provide sufficient evidence to fully address the BOK element.

D.1 Defining Required Behaviour

Table 17 shows relevant objectives for BOK elements associated with the “defining required behaviour”
section of the BOK argument structure.

Table 17: Objectives Comparison: Defining Required Behaviour

BOK Element ‘ Relevant Objective

1.1 Identifying hazards PLT1-2, PLT1-4, PLT2-2
1.1.1 Defining system scope PLT1-1, PLT1-2
1.1.2 Defining the operating environment PLT1-2, PLT2-1, PLT3-2, PLT4-1
1.1.3 Defining operating scenarios PLT1-2, PLT2-1, PLT3-2, PLT4-1

1.2 Identifying hazardous system behaviour PLT1-6, PLT2-3, PLT4-2
1.2.1 Considering human/ machine interactions PLT3-1, PLT3-2, PLT3-3

1.3 Defining safety requirements PLT1-2, PLT1-3, PLT2-2
1.2.1 Validation of safety requirements PLT1-5

1.4 Impact of security on safety PLT1-4, PLT1-6, PLT3-4

This table prompts several observations. Firstly, the related objectives all come from the platform-level
framework: since this framework is primarily concerned with requirements, this is reassuring. Secondly,
most of the BOK elements have multiple related objectives: this is a consequence of the different structural
approaches that have been used; this also emphasises the point that, whilst they were a useful aid when
deriving objectives, the projections (and frameworks) need not be slavishly followed. Thirdly, all of the
platform-level objectives appear at least once in the table. Fourthly, considering a more detailed point, the
BOK differentiates between the operating environment (1.1.2) and operating scenarios (1.1.3); conversely,
this document distinguishes between the platform (i.e., behavioural specification), interacting items and
the (wider) environment.

More generally, this discussion indicates that the objectives listed in this document provide an appropriate
level of coverage of the “defining required behaviour” section of the BOK argument structure. This

77

78

D COMPARISON WITH AAIP BODY OF KNOWLEDGE

observation provides some confidence in these objectives.

D.2 Implementation to Provide the Required Behaviour

Table 18 shows relevant objectives for BOK elements associated with the “implementation to provide the
required behaviour” section of the BOK argument structure.

Table 18: Objectives Comparison: Implementation to Provide the
Required Behaviour

BOK Element ‘ Relevant Objective

2.1 System-level verification PLT1-5

All computation-level and autonomy

2.2 Implementation of SUDA elements . o
architecture-level objectives

2.2.1 Defining requirements for SUDA elements COM1-3, COM2-1, COM2-2
2.2.1.1 Validation of requirements for SUDA elements COM2-1, COM2-2

2.2.2 Defining requirements on components COM1-3, COM2-1, COM2-2
2.2.2.1 Validation of requirements on components COM2-1, COM2-2

2.2.3 Controlling interactions between components PLT1-3, ARC1-1, ARC1-5

2.2.4 Verffication of requirements for SUDA elements PLT1-5, ARC1-5

2.3 Implementing requirements using ML All computation-level objectives
2.3.1 Sufficiency of training data COM1-1, COM1-2, COM1-3
COM2-3, COM2-4, COM2-5, COM3-1,

2.3.2 Effective learning COM3-2

2.3.3 Verification of the learned model COM2-5, COM2-6, COM2-7, COM3-3

2.4 Controlling interactions with other systems PLT2-1, PLT2-2, PLT2-3, PLT4-1

2.5 Controlling interactions at the system-level PLT1-1, PLT1-3

ARC2-2, ARC3-1, ARC3-2, PLT2-3
PLT1-6, ARC1-1, ARC1-2, ARC1-3,

2.6 Handling change during operation

2.6.1 Monitoring RAS operation

ARC1T-4
2.7 Using simulation COM2-6, ARC3-1, PLT1-5
2.8 Explainability COM3-3, ARC2-1, PLT3-2

Consideration of this table highlights a number of points. For example, the BOK breaks the system
down into SUDA elements and further down into components, whereas this document focuses on
autonomy-enabling technologies that may be used within, or to deliver, elements and components. This
means the AAIP provides a more balanced, system-wide perspective; conversely, by design, this document
focuses on aspects related to autonomy.

It is also apparent that the BOK explicitly highlights simulation (BOK Element 2.7). Given the importance of
this topic, this explicit highlighting is advantageous. Within the current document, simulation is considered
at each framework level. Whilst this potentially dilutes the importance of the topic, it does allow specific
aspects to be addressed in greater detail: for example, considerations associated with platform-level

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

simulation are somewhat different to those associated with computation-level activities.

Although mappings can be, and have been, made, this document’s consideration of issues related fleets of
autonomous systems (e.g., Objective PLT2-3) is not readily apparent in the BOK.

Overall, the preceding discussions do not suggest there are any significant omissions in the objectives listed
in this document from the perspective of the “implementation to provide the required behaviour” section
of the BOK.

D.3 Understanding and Controlling Deviations from Required
Behaviour

Table 19 shows relevant objectives for BOK elements associated with the “understanding and controlling
deviations from required behaviour” section of the BOK argument structure.

Table 19: Objectives Comparison: Understanding and Controlling
Deviations from Required Behaviour

BOK Element ‘ Relevant Objective

3.1 Identification of potential deviation from required behaviour

3.1.1 Identifying ‘Sensing’ deviations

3.1.2 Identifying ‘Understanding’ deviations

3.1.3 Identifying ‘Deciding’ deviations ARC1-1, ARC1-2, ARC1-3, ARC1-4,

ARC1-5, PLT1-4, PLT3-2, PLT3-4

3.1.4 Identifying ‘Acting’ deviations

3.1.5 Identifying infrastructure deviations

3.1.6 Identifying ML deviations

3.1.7 Identifying interaction deviations

3.1.8 Identifying human / machine interaction deviations

3.2 Mitigating potential deviations PLT1-4
3.2.1 Failure mitigation ARC1-3
3.2.2 Managing assurance deficits Out of scope

This table clearly illustrates the different philosophies adopted by the BOK and this document. As noted
earlier, the former adopts a balanced, system-wide approach that addresses all aspects of safety; it also
separately highlights each of the SUDA elements. Conversely, this document is deliberately focused on
autonomy-related items and is largely agnostic of where these are used within a system (or platform)
architecture.

The table also shows the BOK's explicit focus on assurance, something that is more implicit within the
current document. In particular, the lack of objectives that directly relate to the management of assurance
deficits (BOK Element 3.2.2) is not considered to be a significant omission. This should occur naturally
through appropriate consideration of the various objectives in this document.

More generally, there do not appear to be any significant omissions in the objectives listed in this document
from the perspective of the “understanding and controlling deviations from required behaviour” section of

D COMPARISON WITH AAIP BODY OF KNOWLEDGE

79

80

D COMPARISON WITH AAIP BODY OF KNOWLEDGE

the BOK.

D.4 Gaining Approval for Operation

Table 20 shows relevant objectives for BOK elements associated with the “gaining approval for operation”
section of the BOK argument structure.

Table 20: Objectives Comparison: Gaining Approval for Operation

BOK Element ‘ Relevant Objective

4.1 Conforming to rules and regulations

4.1.1 Identifying applicable rules and regulations Out of scope

4.1.2 Understanding the requirements rules and regulations

4.2 Risk acceptance

4.2.1 Evaluating risks and benefits of RAS operation Out of scope

4.2.2 Consideration of ethical issues

4.3 Provision of sufficient confidence in the required behaviour COM2-5, PLT1-2, PLT1-5

4.4 Provision for investigation of incidents and accidents COM3-4, ARC2-3

This table illustrates the different scopes of the BOK and the current document. In particular, the BOK
includes laws and regulations, which are intentionally out of scope for this document, as they are expected
to be addressed by standard system engineering processes. The BOK also explicitly considers ethics and
risks of deployment. The former, whilst important, is out of scope for this document. The latter is not
identified as a separate item in this document, but satisfying the associated objectives should provide a
considerable body of evidence to inform risk evaluations.

Given these considerations, and taking into account the intended scope of this document, this table does
not suggest any significant omissions in this document’s objectives from the perspective of the “gaining
approval for operation” section of the BOK.

D.5 Non-Related Objectives

Collectively, the preceding four tables include all but four of the objectives listed in this document.
Collectively, these four objectives make up the software and hardware projections, both of which relate to
the computation-level. These considerations were motivated by the autonomy-focused, projection-based
way that objectives were derived. In contrast, this low-level, cross-cutting concern does not readily appear
from the approach adopted within the BOK. Despite this, the objectives remain important.

The SASWG view the different approaches adopted by the BOK and this document as strengths rather
than weaknesses. Taking different approaches to largely the same question (accepting there is some
difference in the respective scopes) helps ensure nothing is overlooked. To that end, the top-level
mappings established in this appendix provide some confidence that the collection of objectives listed
in this document are appropriate to their intended use.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Appendix E Comparison with UL4600

This appendix provides a high-level comparison between the objectives established in this document
and a draft version (dated 2 October 2019) of UL4600 [82] which has been developed by Underwriters
Laboratories (UL) and Edge Case Research (ECR).

The relative publication timings of UL 4600 and this document, together with the draft nature of UL4600,
meant that an objective-by-objective comparison was neither feasible nor sensible. Consequently, the
comparison has focused on identifying objectives or projections from the current document that map to
the various section headings in UL4600. This provides some confidence that relevant topics have been
addressed: it does not indicate that compliance with this document guarantees compliance with UL4600,
or vice versa.

Each section of UL4600 that contains objectives is considered in turn below. This is followed by a very brief
summary of the conclusions from this comparison exercise.

E.1 UL4600 Sections

E.1.1 Safety Case and Arguments

This section of UL4600 is mainly concerned with the structure, content and presentation of the
platform-level safety case. These considerations are outside the scope of this document. However, it is
noted that a platform-level safety argument would be expected to be supported by the sort of evidence
produced via compliance with the objectives in this document.

E.1.2 Risk Assessment

This section of UL4600 considers fault and hazard identification, risk evaluation and risk mitigation. These
topics are considered in various places in this document. Examples include Objectives PLT1-2, PLT1-3 and
PLT1-4, which relate to the behavioural specification projection within the platform-level framework. Other
projections in that framework are also relevant, including: Objective PLT2-3, which considers interacting
items; Objective PLT3-1, which considers people; and Objective PLT4-1, which considers the environment.

E.1.3 Interaction with Humans and Road Users

The title of this UL4600 section illustrates how its scope (or at least its genesis) differs from this document.
In particular, UL4600 has an implicit focus on autonomous road vehicles, whereas this document is
intended to cover a much wider variety of autonomous systems including, for example, medical diagnosis
systems.

The general contents of this UL4600 section are addressed by projections in the platform-level framework,
for example: Objective PLT2-2 in the interacting items projection; Objective PLT3-1 in the people
projection; and Objective PLT4-1 in the environment projection. There are, inevitably, some differences
in the detail: for example, UL4600 explicitly identifies animals, whereas this document is less prescriptive
in terms of possible elements of the environment.

81

E COMPARISON WITH UL4600

82

E.1.4 Autonomy Functions and Support

This section of UL4600 considers (using the terminology of this document) autonomy-enabling techniques.
It also considers definition of the operational design domain and specific platform-level functions that may
be autonomy-related (e.g., sensing, perception, planning, prediction). Considerations related to timing are
also included.

At the platform-level, use of autonomy-enabling techniques is addressed by the by the behavioural
specification projection, for example, Objective PLT1-1. With regards to platform-level functions, this
document is less descriptive than UL4600. However, similar notions are represented, for example: sensing
and perception are related to Objective PLT4-2 in the platform-level framework; understanding the
performance of ML algorithms is addressed by Objectives COM2-3 and COM2-4, from the task projection
in the computation-level framework; likewise, timing requirements are addressed by Objective COM2-2.

E.1.5 Software and System Engineering Processes

The contents of this section of UL4600 are clearly described by its title. From the perspective of
this document, software development processes are covered by Objective COM4-1 from the software
projection in the computation-level framework; likewise, (computational) hardware development processes
are covered by Objective COM5-1 from the hardware projection in the computation-level framework.
Software and hardware processes are explicitly included as there are autonomy-specific considerations
relevant to these areas. Conversely, within the current document there is no corresponding objective for
system-level engineering processes. This reflects a deliberate focus on aspects directly related to autonomy
and the associated desire to avoid duplicating existing guidance on general topics. More specifically, the
autonomy architecture-level framework should allow autonomy-enabling technologies to be incorporated
within standard system engineering processes.

E.1.6 Dependability

This section of UL4600 considers maintaining safety in the presence of faults, including fault detection
and recovery. The use of redundancy and isolation are also covered, as are incident response and cyber
security.

Within the current document, dependability (including fault prevention and fault tolerance) is covered
at all three framework levels. Relevant examples include: Objectives COM4-2 and COMS5-2 at
the computation-level; all of the objectives related to the tolerance projection in the autonomy
architecture-level; and Objectives PLT1-4 and PLT1-6 at the platform-level. Likewise, incident response
is covered across a number of levels, for example, via Objectives COM3-4, ARC2-3 and PLT3-2. The same
is also true for cyber security; relevant items include Objectives ARC1-4, ARC2-4, ARC3-1, PLT1-6 and
PLT3-4.

E.1.7 Data and Networking

This section of UL4600 considers data communications and networks (essentially, data in motion), data
storage (essentially, data at rest) and associated infrastructure. The section appears to focus on data
communications to, from and within a platform, that is, “platform data”. data associated with training
algorithms using ML is covered in the “Autonomy Functions and Support” section. The concept of “platform
data” is less explicit in this document than in UL4600. Nevertheless, relevant concepts are covered. For

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

example, data-related faults and failures should be managed by Objectives ARC1-1 and ARC1-3, regardless
of whether the data is in motion or at rest.

E.1.8 Verification, Validation and Test

In addition to the three topics listed in the section title, this section of UL4600 also includes run-time
monitoring and updates to the safety case. Within this document, the concepts of verification, validation
and test are considered at both the computation-level (e.g., Objectives COM2-3 and COM2-5) and the
platform-level (e.g., Objective PLT1-5). Run-time monitoring is addressed through Objective PLT1-6. The
specific nature and construct of a safety case are outside the scope of this document; likewise, updates to
the safety case are also out of scope.

E.1.9 Tool Qualification, COTS and Legacy Components

The contents of this UL4600 section are as indicated by its title. From the perspective of this document,
qualification of software and hardware engineering tools is covered by Objectives COM4-1 and COM5-1,
respectively. Commercial Off-The-Shelf (COTS) items are not explicitly addressed by this document,
mainly because some readers can interpret the term too narrowly, for example, excluding open source
frameworks and pre-trained ML models. However, some relevant concepts are covered, for example, by
Objectives ARC1-4 and PLT3-4.

E.1.10 Lifecycle Concerns

This section of UL4600 steps through typical lifecycle phases, including requirements, design,
manufacturing, operation and disposal. It also includes field modifications and updates.

This document does not include such an explicit listing of lifecycle phases. However, aspects of these
are addressed, for example, in Objectives ARC2-2, PLT1-6 and PLT3-3. Updates are covered by the
adaptation projection at the autonomy architecture-level. Allowable field modifications are considered in
the same way; unauthorised field modifications are covered, for example, by Objectives ARC1-4, PLT1-4
and PLT3-4.

E.1.11 Maintenance

This section of UL4600 includes maintenance and other aspects of non-operational safety. In this
document, maintenance is addressed via Objectives PLT3-2 and PLT3-3. Other aspects of non-operational
safety are less explicit in this document than in UL4600: they are at least partially addressed by, for
example, Objectives PLT1-2, PLT1-4, PLT2-2 and PLT4-1.

E.1.12 Metrics and Safety Performance Indicators

This section of UL4600 is mainly concerned with creating and monitoring platform-level Safety Performance
Indicators (SPIs). The need to continually-demonstrate safety is not as explicit in this document as it is in
UL4600. However, the same naotion is considered by Objective PLT1-6, in the platform-level framework.
This is supported by Objective ARC2-2, in the autonomy architecture-level framework, and Objectives

E COMPARISON WITH UL4600

83

E COMPARISON WITH UL4600

84

COM2-3 and COM2-4, in the computation-level framework.

E.1.13 Assessment

This section of UL4600 is concerned with assessing conformance to UL4600, including the use of
independence and monitoring. This type of conformance is outside the scope of this document.

E.2 Summary

The preceding discussions have provided a high-level comparison between a draft version of UL4600
(dated 2 October 2019) [82] and this document. Whilst there are some intentional differences in scope,
this UL4600-based analysis has not identified any significant omissions from this document.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Appendix F Comparison with OECD Principles on Al

In May 2019, member countries of the OECD adopted a number of principles® on Al. This appendix
provides a high-level indication of how the contents of this document may support these principles.

In general, Al only has an effect when it is embodied within a wider system (or platform). Consequently,
all three frameworks used in this document are potentially relevant to the OECD principles. The following
paragraphs indicate how the projections and, where relevant, objectives associated with these frameworks
relate to each of the principles.

F.1 Principles

F.1.1 Al should benefit people and the planet by driving inclusive growth, sustainable
development and well-being.

This principle is focused on the effects of the Al. This relates most directly to the requirements that are
placed on the behaviour of the associated platform: this is addressed in the behavioural specification
projection within the platform-level framework.

F.1.2 Al systems should be designed in a way that respects the rule of law, human
rights, democratic values and diversity, and they should include appropriate
safeguards - for example, enabling human intervention where necessary - to
ensure a fair and just society.

From the perspective of this guidance document, the “rule of law” part of this principle is expected to be
covered by standard systems engineering process. Hence, it is not directly related to any projection (or
objective).

The “human rights” and “democratic values” pieces are, arguably, about platform-level requirements: these
are covered by the behavioural specification projection within the platform-level framework. Including
appropriate interfaces (e.g., to support explanation of an Al-based decision) may also be relevant; this
relates to Objective PLT3-2.

In order for an Al to respect diversity, this must be included in the data used to support the
Al's development: considerations associated with the experience projection, in the computation-level
framework, are relevant here.

The current document’s focus on safety assurance means that safeguards are considered from multiple
viewpoints. For example: Objectives COM4-2 and COMS5-2 provide safeguards against software and
hardware misbehaviour; the tolerance projection, in the autonomy architecture-level framework, provides
safeguards against faults, failures and adversarial attempts to disrupt a computation; Objective ARC3-2
provides safeguards against inappropriate adaptation; and Objective PLT1-4 provides safeguards against
foreseeable misuse and abuse.

Finally, the people projection, within the platform-level framework, supports the need for human
intervention, where necessary.

9 https://www.oecd.org/going-digital/ai/principles/.

85

86

F COMPARISON WITH OECD PRINCIPLES ON Al

F.1.3 There should be transparency and responsible disclosure around Al systems
to ensure that people understand Al-based outcomes and can challenge them.

In general, publishing information against the objectives listed in this document will support transparency
and responsible disclosure. This information should also allow for reasonable challenge. This could
arise, for example, as part of a formal certification process; alternatively, it could come from less formal
interactions with the general public.

In addition, the objectives associated with the information provision projection, within the autonomy
architecture-level framework, should ensure that people are provided with accurate information.
Furthermore, the objectives associated with the people projection, in the platform-level framework, should
ensure that appropriate information is provided in an intelligible manner.

F.1.4 Al systems must function in a robust, secure and safe way throughout their life
cycles and potential risks should be continually assessed and managed.

Arguably, all of the objectives in this document are relevant to this principle. Picking out some specific
examples: Objective PLT1-2 leads to a definition of “safe operation”; Objective PLT1-4 maintains safety in
the presence of faults and failures, as well as foreseeable misuse and abuse; Objective PLT1-6 provides
monitoring during operational use (e.g., to identify new hazards, as part of continual assessment and
management); Objective COM1-4 protects against distribution shift; Objective ARC1-2 ensures the
platform is tolerant to “out of support” operational inputs; Objective ARC1-4 protects against adversarial
attempts to disrupt a computation; Objective ARC3-1 protects against inappropriate or unauthorised
adaptations; and the people projection, within the platform-level framework, explicitly covers the whole
system lifecycle.

F.1.5 Organisations and individuals developing, deploying or operating Al systems
should be held accountable for their proper functioning in line with the above
principles.

This principle is mainly concerned with the legal and regulatory environment within which Al systems are
used. These considerations are deliberately outside the scope of the current document. Nevertheless,
requiring compliance with the objectives in this document may be one way of holding to account those
responsible for developing, deploying or operating such systems.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Appendix G Known Issues

This appendix provides a list of known issues. These are items that were identified, but not resolved, during
the creation of the current version of this document. Generally speaking, resolution of these issues needs a
greater amount of knowledge and experience than is currently available. Occasionally, resolution requires
more resource than was available to support the production of this document. In all cases, the issue was
deemed sufficiently important to warrant specific capture and tracking.

Note that the following list is not intended to be complete.

e The objectives in this document have been developed largely from a theoretical basis. Efforts have
been made to provide confidence in the objectives, for example, by comparing them with a number
of related documents. However, to date, the objectives have not been “proven through use”. In
particular, there would be significant value in completing several worked examples.

e At the moment, the document makes no distinction between different criticality levels, for example,
DALs or SILs. As exemplified by the last of the “four plus one” software safety assurance principles
[42], it is beneficial to target effort towards more critical system elements. In order to achieve this,
some form of graduation is necessary. This could be achieved by requiring certain objectives only
to be completed at higher criticality levels. Alternatively, higher criticality levels may require some
objectives to be completed with independence. Another approach involves addressing an objective
more thoroughly as the criticality level increases. It is unclear which combination of these options will
be most appropriate for the SASWG's work but, at the current time, it is considered likely that most
objectives will need to be satisfied, regardless of criticality level.

e At the moment, the document makes little distinction between different types of ML approach. In
some cases this may be captured in the detailed response to an associated with an objective: for
example, Objective COM3-2 relates to protecting against typical errors, which will differ between
different types of ML approach. However, there are several places where a more nuanced approach
may be more valuable. One such area is the relationship between the adaptation projection
(discussed in subsection 5.3) and ML approaches that continue to learn during operational use.

e Objective COM2-7 notes the difference between algorithm instances, which may produce
different results, and algorithm variants, which are expected to produce different results in some
circumstances. It is not clear at which point an algorithm ceases to be a variant and becomes
something that should be considered as an item in its own right. A key consideration is how easily
safety assurance evidence can be transferred between items. More generally, this topic is related to
reuse and software product line engineering.

e Currently, the document does not provide much information on integration of Software (SW) and
Hardware (HW); neither SW-SW integration nor SW-HW integration is considered in any detail.
Although the objectives associated with the autonomy architecture-level framework are helpful in
this regard, this is an area that may be addressed in more detail in future editions.

e The discussion section associated with each objective provides suggestions for how the objective may
be at least partially met. However, at the moment, there are many cases where it is not clear how
best to satisfy an objective and, equally important, how best to demonstrate this satisfaction. A larger
amount of practical experience is needed before this specific type of guidance can be provided.

87

(0zoz uel) veSL-DSDS
| |

This page is intentionally blank

SINSSINMONM - D

88|

SCSC-153A (Jan 2020)

Appendix H Abbreviations

AAIP Assuring Autonomy International Programme
AD Autonomous Driver

ADS Automated Driving System

Al Artificial Intelligence

ANN Artificial Neural Network

AS Autonomous Systems

BIT Built-In Test

BOK Body Of Knowledge

CM Configuration Management

CNN Convolutional Neural Network

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

DAL Development Assurance Level

DfT Department for Transport

DLOD Defence Line of Development

DNN Deep Neural Network

ECR Edge Case Research

FMEA Failure Mode and Effects Analysis

FPGA Field Programmable Gate Array

FRAM Functional Resonance Analysis Method
GAN Generative Adversarial Network

GPU Graphical Processing Unit

GSN Goal Structuring Notation

HAZOP Hazard and Operability Study

HMI Human-Machine Interface

HW Hardware

ISO International Organization for Standardization
ISSRE International Symposium on Software Reliability Engineering
MAPE Monitor, Analyse, Plan, Execute

MC/DC Modified Condition / Decision Coverage
MEL Minimum Equipment List

ML Machine Learning

MOD Ministry Of Defence

H ABBREVIATIONS

90

NaN
NCSC
NHTSA
NN
OECD
PCA
PDI
PR
PSH
RAM
RAS
REQ
RL
RNN
SASWG
SCANN
SCSC
SEU
SIL
SMS
SoC
SOTIF
SOuP
SPI
SSS
STPA
SUDA
SVM
SW
SWaP
TEW
TPU
TQL
TV

Not a Number
National Cyber Security Centre
National Highway Traffic Safety Administration

Neural Network

Organisation for Economic Co-operation and Development

Principal Component Analysis
Parameter Data ltem

Process Requirement

Product Service History

Random Access Memory

Robotics and Autonomous Systems
requirement

Reinforcement Learning

Recurrent Neural Network

Safety of Autonomous Systems Working Group
Safety-Critical Artificial Neural Network
Safety Critical Systems Club

Single Event Upset

Safety Integrity Level

Safety Management System
System-on-Chip

Safety Of The Intended Function
Software of Uncertain Pedigree

Safety Performance Indicator
Safety-critical Systems Symposium
Systems Theoretic Process Analysis
Sense, Understand, Decide, Act
Support Vector Machine

Software

Size, Weight and Power

Test, Evaluation, Verification and Validation
Tensor Processing Unit

Tool Qualification Level

Training, Test and Verification

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

ucl University of California, Irvine
UL Underwriters Laboratories
V&YV Verification and Validation

WCET Worst Case Execution Time

WoSoCer Workshop on Software Certification

H ABBREVIATIONS

91

H ABBREVIATIONS

IZ6

yue|q Ajleuonuaiul st aded siyl

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Appendix | References

[11 A. ADADI AND M. BERRADA, Peeking inside the black-box: A survey on explainable artificial intelligence (XAl),
IEEE Access, 6 (2018), pp. 52138-52160.

[2] C. C. AGGARWAL AND S. Y. PHILIP, Privacy-preserving data mining: a survey, in Handbook of database
security, Springer, 2008, pp. 431-460.

[3] R.ALEXANDER, H. R. HAWKINS, AND A. J. RAE, Situation coverage-a coverage criterion for testing autonomous
robots, University of York, (2015).

[4] E. ALVES, D. BHATT, B. HALL, K. DRISCOLL, A. MURUGESAN, AND J. RUSHBY, Considerations in assuring safety
of increasingly autonomous systems, tech. rep., NASA, 2018.

[5] A. ANTONIOU, A. STORKEY, AND H. EDWARDS, Data augmentation generative adversarial networks, arXiv,
1711.04340 (2017).

[6] R. ASHMORE, R. CALINESCU, AND C. PATERSON, Assuring the machine learning lifecycle: Desiderata, methods,
and challenges, arXiv, 1905.04223 (2019).

[7]1 R. ASHMORE AND M. HiLL, Boxing clever: Practical techniques for gaining insights into training data and
monitoring distribution shift, in First International Workshop on Artificial Intelligence Safety Engineering,
2018.

[8] R.ASHMORE AND E. LENNON, Progress towards the assurance of non-traditional software, in Developments
in System Safety Engineering, Proceedings of the Twenty-fifth Safety-Critical Systems Symposium,
Safety-Citical Systems Club, 2017. ISBN 978-1540796288.

[9] R. ASHMORE AND B. MADAHAR, Rethinking diversity in the context of autonomous Systems, in
Engineering Safe Autonomy, 27th Safety-Critical Systems Symposium, Safety-Citical Systems Club,
2019, pp. 175-192.

[10] D. BEDFORD, G. MORGAN, AND J. AUSTIN, Requirements for a standard certifying the use of artificial neural
networks in safety critical applications, in Proceedings of the international conference on artificial neural
networks, 1996.

[11] R. K. BELLAMY, K. DEY, M. HIND, S. C. HOFFMAN, S. HOUDE, K. KANNAN, P. LOHIA, J. MARTINO, S. MEHTA,
A. MOJSILOVIC, S. NAGAR, K. N. RAMAMURTHY, J. RICHARDS, D. SAHA, P. SATTIGERI, M. SINGH, K. R. VARSHNEY,
AND Y. ZHANG, Al fairness 360: An extensible toolkit for detecting, understanding, and mitigating unwanted
algorithmic bias, arXiv, 1810.01943 (2018).

[12] J. BIRCH, Safety argument framework and considerations for highly automated vehicles. Personal
Communication, September 2017.

[13] E. BRECK, S. Cal, E. NIELSEN, M. SALIB, AND D. SCULLEY, What's your ML test score? A rubric for ML
production systems, in NIPS Workshop on Reliable Machine Learning in the Wild, 2016.

[14] S. BURTON, L. GAUERHOF, AND C. HEINZEMANN, Making the case for safety of machine learning in highly
automated driving, in International Conference on Computer Safety, Reliability, and Security, Springer,
2017, pp. 5-16.

[15] CENTRE FOR CONNECTED AND AUTONOMOUS VEHICLES, Code of practice: Automated vehicle trialling, tech.
rep., Department for Transport, February 2019.

[16] CERTIFICATION AUTHORITIES SOFTWARE TEAM, Guidance for assessing the software aspects of product service
history of airborne systems and equipment, Tech. Rep. CAST-1, Federal Aviation Authority, June 1998.

REFERENCES

94

[17]

[18]

[19]

[20]

[27]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[37]

[32]

[33]

[34]

X. CHEN, C. Liy, B. LI, K. Lu, AND D. SONG, Targeted backdoor attacks on deep learning systems using data
poisoning, arXiv, 1712.05526 (2017).

C.-H. CHENG, C.-H. HUANG, AND H. YASUOKA, Quantitative projection coverage for testing ML-enabled
autonomous systems, arxiv, 1805.04333 (2018).

J.). CHILENSKI AND S. P. MILLER, Applicability of modified condition/decision coverage to software testing,
Software Engineering Journal, 9 (1994), pp. 193-200.

P. CHRABASZCZ, I. LOSHCHILOV, AND F. HUTTER, Back to basics: Benchmarking canonical evolution strategies
for playing Atari, arXiv, 1802.08842 (2018).

A. CUl AND S. J. STOLFO, Defending embedded systems with software symbiotes, in Proceedings of the
14th International Conference on Recent Advances in Intrusion Detection, RAID'11, Berlin, Heidelberg,
2011, Springer-Verlag, pp. 358-377.

K. CZARNECKI AND R. SALAY, Towards a framework to manage perceptual uncertainty for safe automated
driving, in International Conference on Computer Safety, Reliability, and Security, Springer, 2018,
pp. 439-445.

DEPARTMENT FOR TRANSPORT, The Key Principles of Cyber Security for Connected and Automated Vehicles,
HM Government, 2017.

D. DHEERU AND E. KARRA TANISKIDOU, UCI machine learning repository, 2017.

S. DOGRAMADZI, M. E. GIANNACCINI, C. HARPER, M. SOBHANI, R. WOODMAN, AND J. CHOUNG, Environmental
hazard analysis-a variant of preliminary hazard analysis for autonomous mobile robots, Journal of
Intelligent & Robotic Systems, 76 (2014), pp. 73-117.

M. DOUTHWAITE AND T. KELLY, Safety-critical software and safety-critical artificial intelligence: Integrating
new practices and new safety concerns for Al systems, in Evolution of System Safety, Proceedings
of the Twenty-sixth Safety-Critical Systems Symposium, Safety-Critical Systems Club, 2018. ISBN
978-1979733618.

J. DUNJO, V. FTHENAKIS, J. A. VILCHEZ, AND J. ARNALDOS, Hazard and operability (HAZOP) analysis. a literature
review, Journal of hazardous materials, 173 (2010), pp. 19-32.

EUROPEAN AVIATION SAFETY AGENCY, Certification specifications for aeroplane flight simulation training
devices, tech. rep., European Aviation Safety Agency, 2012.

FAA, Assurance of multicore processors in airborne systems, Tech. Rep. DOT/FAA/TC-16/51, FAA, July 2017.

J. M. FArIA, Non-determinism and failure modes in machine learning, in 2017 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), IEEE, 2017, pp. 310-316.

F. M. FAVARO, D. W. JACKSON, J. H. SALEH, AND D. N. MAVRIS, Software contributions to aircraft adverse
events: Case studies and analyses of recurrent accident patterns and failure mechanisms, Reliability
Engineering & System Safety, 113 (2013), pp. 131-142.

M. FREDRIKSON, S. JHA, AND T. RISTENPART, Model inversion attacks that exploit confidence information
and basic countermeasures, in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, ACM, 2015, pp. 1322-1333.

J. GARCIA AND F. FERNANDEZ, A comprehensive survey on safe reinforcement learning, Journal of Machine
Learning Research, 16 (2015), pp. 1437-1480.

T. GEBRU,]. MORGENSTERN, B. VECCHIONE, J. W. VAUGHAN, H. WALLACH, H. DAUMEE lll, AND K. CRAWFORD,
Datasheets for datasets, arXiv, 1803.09010 (2018).

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

[35] J. GILMER, L. METZ, F. FAGHRI, S. S. SCHOENHOLZ, M. RAGHU, M. WATTENBERG, AND |. GOODFELLOW,
Adversarial spheres, arXiv, 1801.02774v2 (2018).

[36] I. J. GOODFELLOW, J. SHLENS, AND C. SZEGEDY, Explaining and harnessing adversarial examples, in
Proceedings of the 3rd International Conference on Learning Representations, 2015.

[37] T. GU, B. DOLAN-GAVITT, AND S. GARG, Badnets: Identifying vulnerabilities in the machine learning model
supply chain, arXiv, 1708.06733 (2017).

[38] R. GUIDOTTI, A. MONREALE, S. RUGGIERI, F. TURINI, F. GIANNOTTI, AND D. PEDRESCHI, A survey of methods
for explaining black box models, ACM Computing Surveys (CSUR), 51 (2018), p. 93.

[39] G. HAIXIANG, L. YIJING, J. SHANG, G. MINGYUN, H. YUANYUE, AND G. BING, Learning from class-imbalanced
data: Review of methods and applications, Expert Systems with Applications, 73 (2017), pp. 220-239.

[40] B. HAMNER, Machine learning gremlins. Presented at the 2014 O'Reilly Strata Data Conference in Santa
Clara, 2014.

[41] R. HAWKINS, Body of knowledge - structure and scope, tech. rep., Assuring Autonomy International
Programme, April 2019.

[42] R. HAwkINS, . HABLI, AND T. KELLY, The principles of software safety assurance, 31st International System
Safety Conference, Boston, Massachusetts USA, (2013).

[43] L. A. HENDRICKS, Z. AKATA, M. ROHRBACH, J. DONAHUE, B. SCHIELE, AND T. DARRELL, Generating visual
explanations, in Proceedings of the 14th European Conference on Computer Vision, 2016, p. 3-19.

[44] S. HOLLAND, A. HOSNY, S. NEWMAN, J. JOSEPH, AND K. CHMIELINSKI, The dataset nutrition label: A framework
to drive higher data quality standards, arXiv, 1805.03677 (2018).

[45] E. HOLLNAGEL, FRAM: the functional resonance analysis method: modelling complex socio-technical
systems, CRC Press, 2017.

[46] T.ISHIMATSU, N. G. LEVESON, J. P. THOMAS, C. H. FLEMING, M. KATAHIRA, Y. MIYAMOTO, R. UJIIE, H. NAKAO,
AND N. HOSHINO, Hazard analysis of complex spacecraft using systems-theoretic process analysis, journal
of Spacecraft and Rockets, 51 (2014), pp. 509-522.

[47] 1SO, Road vehicles - functional safety, Tech. Rep. ISO 26262, I1SO, 2011.
[48] N.JOHNSON AND T. KELLY, Safety-security assurance framework (SSAF) in practice, 2018.

[49] C. JONES, R. BLOOMFIELD, P. FROOME, AND P. BisHOP, Methods for Assessing the Safety Integrity of
Safety-related Software of Uncertain Pedigree (SOUP)., HSE Books, 2001.

[50] M. KARDOS AND P. DEXTER, A simple handbook for non-traditional red teaming, tech. rep., Defence Science
and Technology Group Edinburgh, SA, 2017.

[51] J. Z. KOLTER AND E. WONG, Provable defenses against adversarial examples via the convex outer adversarial
polytope, arXiv, (2017).

[52] A. KRIZHEVSKY, |. SUTSKEVER, AND G. E. HINTON, /Imagenet classification with deep convolutional neural
networks, in Advances in neural information processing systems, 2012, pp. 1097-1105.

[53] J. LEMLEY, F. JAGODZINSKI, AND R. ANDONIE, Big holes in big data: A Monte Carlo algorithm for detecting large
hyper-rectangles in high dimensional data, in IEEE Computer Software and Applications Conf., 2016,
pp. 563-571.

REFERENCES

95

96

REFERENCES

[54] Z. C.LIPTON, K. AZIZZADENESHELI, A. KUMAR, L. LI, J. GAO, AND L. DENG, Combating reinforcement learning’s
sisyphean curse with intrinsic fear, arXiv, 1611.01211 (2016).

[55] V. LOPEZ, A. FERNANDEZ, S. GARCIA, ET AL., An insight into classification with imbalanced data: Empirical
results and current trends on using data intrinsic characteristics, Information Sciences, 250 (2013),
pp. 113-141.

[56] S. MA, Y. LIy, G. TAO, W.-C. LEE, AND X. ZHANG, Nic: Detecting adversarial samples with neural network
invariant checking, in NDSS, 2019.

[57] G. MASON, R. CALINESCU, D. KUDENKO, AND A. BANKS, Assured Reinforcement Learning with Formally
Verified Abstract Policies, 2017.

[58] C. MENON AND R. ALEXANDER, A safety-case approach to ethical considerations for autonomous vehicles, in
Proceedings of the 12 IET International Conference on System Safety and Cyber Security, IET, 2017.

[59] MOD, How defence works, Tech. Rep. v4.2, MOD, 2015.

[60] A. S. MORCOS, D. G. T. BARRETT, N. C. RABINOWITZ, AND M. BOTVINICK, On the importance of single
directions for generalization, arXiv, 1803.06959 (2018).

[61] J. G. MORENO-TORRES, T. RAEDER, R. ALAIZ-RODRIGUEZ, N. V. CHAWLA, AND F. HERRERA, A unifying view on
dataset shift in classification, Pattern Recognition, 45 (2012), p. 521-530.

[62] NATS, NATS system failure 12 December 2014 - final report, tech. rep., NATS Independent Enquiry Panel,
2015.

[63] A. ODENAAND . GOODFELLOW, Tensorfuzz: Debugging neural networks with coverage-guided fuzzing, arXiv,
1807.10875 (2018).

[64] K. POHL AND A. METZGER, Software product line testing, Communications of the ACM, 49 (2006),
pp. 78-81.

[65] D. POWELL, J. ARLAT, Y. DESWARTE, AND K. KANOUN, Tolerance of design faults, in Dependable and Historic
Computing, Springer, 2011, pp. 428-452.

[66] S. RABANSER, S. GUNNEMANN, AND Z. C. LIPTON, Failing loudly: An empirical study of methods for detecting
dataset shift, arXiv, 1810.11953 (2018).

[67] M. T. RIBEIRO, S. SINGH, AND C. GUESTRIN, Why should | trust you?: Explaining the predictions of any
classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, 2016, pp. 1135-1144.

[68] RTCA, Design assurance guidance for airborne electronic hardware, Tech. Rep. DO-254, RTCA, April 2000.

[69] ——, Software considerations in airborne systems and equipment certification, Tech. Rep. DO-178C, RTCA,
December 2011.

[70] ——, Software tool qualification considerations, Tech. Rep. DO-331, RTCA, December 2011.

[71] ——, Airworthiness security process specification, Tech. Rep. DO-326A, RTCA, August 2014.

[72] R. SALAY AND K. CZARNECKI, Using machine learning safely in automotive software: An assessment and
adaption of software process requirements in iso 26262, arXiv, 1808.01614 (2018).

[73] R. G. SARGENT, Verification and validation of simulation models, in Simulation Conference (WSC),
Proceedings of the 2009 Winter, IEEE, 2009, pp. 162-176.

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

[74] C. SCHORN, A. GUNTORO, AND G. ASCHEID, Efficient on-line error detection and mitigation for deep
neural network accelerators, in International Conference on Computer Safety, Reliability, and Security,
Springer, 2018, pp. 205-219.

[75] S. SRISAKAOKUL, Z. WU, A. ASTORGA, O. ALEBIOSU, AND T. XIE, Multiple-implementation testing of supervised
learning software, in Proc. AAAI-18 Workshop on Engineering Dependable and Secure Machine
Learning Systems (EDSMLS), 2018.

[76] N. SRIVASTAVA, G. HINTON, A. KRIZHEVSKY, . SUTSKEVER, AND R. SALAKHUTDINOV, Dropout: a simple
way to prevent neural networks from overfitting, The Journal of Machine Learning Research, 15 (2014),
pp. 1929-1958.

[77] Y. SUN, M. WU, W. RUAN, X. HUANG, M. KwIATKOWSKA, AND D. KROENING, Concolic testing for deep neural
networks, arXiv, 1805.00089 (2018).

[78] C. SZEGEDY, W. ZAREMBA, |. SUTSKEVER, J. BRUNA, D. ERHAN, |. GOODFELLOW, AND R. FERGUS, Intriguing
properties of neural networks, arXiv, 1312.6199 (2013).

[79] THE DATA SAFETY INITIATIVE WORKING GROUP, Data Safety Guidance, no. v3.1, Safety-Critical Systems
Club, 2019. SCSC-127D.

[80] F. TRAMER, F. ZHANG, A. JUELS, M. K. REITER, AND T. RISTENPART, Stealing machine learning models via
prediction apis, in Proceedings of the 25th USENIX Security Symposium, 2016, p. 601-618. O.

[81] J. W. TUKEY, Exploratory data analysis, vol. 2, Reading, Mass., 1977.

[82] UNDERWRITERS LABORATORIES, The standard for safety for the evaluation of autonomous products, tech.
rep., Underwriters Laboratories, Edge Case Research, October 2019.

[83] S. WACHTER, B. MITTELSTADT, AND C. RUSSELL, Counterfactual explanations without opening the black box:
Automated decisions and the gdpr, arXiv, 1711.00399 (2017).

[84] K. WAGSTAFF, Machine learning that matters, in Proceedings of the 29th International Conference on
Machine Learning, 2012, 2012, pp. 529-536.

[85] G. M. WEIss, Mining with rarity: A unifying framework, ACM Sigkdd Explorations Newsletter, 6 (2004),
pp. 7-19.

[86] T.-W. WENG, P-Y. CHEN, L. M. NGUYEN, M. S. SQUILLANTE, |. OSELEDETS, AND L. DANIEL, Proven: Certifying
robustness of neural networks with a probabilistic approach, arXiv preprint arXiv:1812.08329, (2018).

[87] Y. YANG, M. HE, M. LI, Q. WANG, AND B. BOEHM, Phase distribution of software development effort, in
Proceedings of the Second ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM ‘08, New York, NY, USA, 2008, ACM, pp. 61-69.

[88] Y. ZHANG, Y. CHEN, S.-C. CHEUNG, Y. XIONG, AND L. ZHANG, An empirical study on tensorflow program bugs,
in Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018, New York, NY, USA, 2018, ACM, pp. 129-140.

REFERENCES

97

98

REFERENCES

This page is intentionally blank

SCSC-153A (Jan 2020)

SCSC-153A (Jan 2020)

Appendix] Contributors

This document has had the benefit of contributions from a large number of people, who work for a
variety of organisations, which collectively span a range of different sectors. Note that contributions have
been made on an individual basis and, in particular, the inclusion of an individual or organisation in the
following list does not necessarily mean that individual or organisation agrees with the entire contents of

the document.

Contributors to the current version include:

Rob Alexander, University of York

Hamid Asgari, Thales UK

Rob Ashmore, Dstl

Andrew Banks, LDRA

Rajiv Bongirwar, Hemraj Consultants

Ben Bradshaw, ZF

John Bragg, MBDA UK Ltd.

John Clegg, Independent (ex-QinetiQ)

Jane Fenn, BAE Systems

Chris Harper, University of the West of England
David Harvey, Thales UK

Nikita Johnson, University of York

Catherine Menon, University of Hertfordshire
Roger Rivett, Independent (ex-Jaguar Land Rover)
Philippa Ryan, Adelard LLP

Mark Sujan, Human Reliability

Nick Tudor, D-RisQ

Stuart Tushingham, Altran

Contributors to the previous versions include:

Rob Alexander, University of York
Rob Ashmore, Dstl

Andrew Banks, LDRA

John Birch, Horiba-MIRA

Ben Bradshaw, ZF

John Bragg, MBDA UK Ltd.

99

100

CONTRIBUTORS

J

Lavinia Burski, AECOM

John Clegg, Independent (ex-QinetiQ)
Timothy Coley, XPI Simulation

Chris Harper, Atkins

Neil Lewis, Dyson

Catherine Menon, University of Hertfordshire
Ken Neal, Ebeni

Ashley Price, Raytheon

Stuart Reid, STA Consulting

Roger Rivett, Jaguar Land Rover
Philippa Ryan, Adelard LLP

Alan Simpson, Ebeni

Rod Steel, Thales

Nick Tudor, D-RisQ

Stuart Tushingham, Altran

SCSC-153A (Jan 2020)

Authored by the Safety of Autonomous Systems Working Group (SASWG),
and building on a previous edition, this document now provides a coherent
set of objectives that should be satisfied by any compelling safety
argument for an autonomous system.

There is a deliberate focus on the novel safety assurance challenges that
are associated with autonomy-enabling techniques, especially Artificial
Intelligence (Alt}q developed using Machine Learnin ?ML) agproaches.
Consequently, this document is best employed within a wider Safety
Management System (SMS).

The objectives are organised into three frameworks, covering issues related
to computations, autonomy architectures and platforms. Where possible,
these frameworks and the associated objectives have been compared and
contrasted to related documents. This provides some confidence that the
listed objectives are representative of an emerging consensus of what is
required to support autonomous system safety arguments.

Nevertheless, the current edition represents a step on a journey. As further
work is conducted, and ex%erlence is gained, revisions are expected. To
support this, comments on this document are actively encouraged.

In the previous edition, three frameworks were identified and of these the
computational-level framework with projections and objectives was
described. In this edition, the other two frameworks have been renamed
and fully developed.

The Safety Critical Systems Club (SCSC) is the professional network for
sharing knowledge about safety-critical systems. It brings together:
engineers and specialists from a range of disciplines working on
safety-critical systems in a wide variety of industries; academics
researching the arena of safety-critical systems; providers of the tools
and services that are needed to develop the systems; and the regulators
who oversee safety.

rokEveavone wokkinoinsystessareir] This document was written by the Safety of Autonomous Systems
Workin Grou]i (SASWG), which is convened under the auspices of the
SCSC. The goal of the SASWG is to produce clear guidance on how
autonomous systems and autonomy technologies should be managed
in a safety related context, throughout the lifecycle, in a way that is
tightly focused on challenges unique to autonomy.

ISBN 9781654029050

9 117816541029050

	Front Cover
	SASWG_Frameworks_Doc_20200115
	1 Introduction
	1.1 Document Aim and Scope
	1.2 Frameworks, Projections and Objectives
	1.3 Document Status
	1.4 Terminology
	1.5 Document Structure

	2 Computation-Level Framework: Description
	2.1 Projections
	2.2 Summary

	3 Computation-Level Framework: Objectives
	3.1 Experience
	3.2 Task
	3.3 Algorithm
	3.4 Software
	3.5 Hardware

	4 Autonomy Architecture-Level Framework: Description
	4.1 Projections
	4.2 Summary

	5 Autonomy Architecture-Level Framework: Objectives
	5.1 Tolerance
	5.2 Information Provision
	5.3 Adaptation

	6 Platform-Level Framework: Description
	6.1 Behavioural Specification
	6.2 Interacting Items
	6.3 People
	6.4 Environment
	6.5 Summary

	7 Platform-Level Framework: Objectives
	7.1 Behavioural Specification
	7.2 Interacting Items
	7.3 People
	7.4 Environment

	8 Summary
	8.1 Computation-Level
	8.2 Autonomy Architecture-Level
	8.3 Platform-Level

	Appendix A Computation-Level Framework: Justification
	A.1 Computation-Level Frameworks
	A.2 Framework Mappings
	A.3 Software and ML Development Mappings

	Appendix B Computation-Level Objectives: Justification
	B.1 Requirements for a NN Standard
	B.2 ML-Related Gaps in an Automotive Standard

	Appendix C Platform-Level Framework: Justification
	C.1 Platform-Level Frameworks
	C.2 Framework Mappings

	Appendix D Comparison with AAIP Body of Knowledge
	D.1 Defining Required Behaviour
	D.2 Implementation to Provide the Required Behaviour
	D.3 Understanding and Controlling Deviations from Required Behaviour
	D.4 Gaining Approval for Operation
	D.5 Non-Related Objectives

	Appendix E Comparison with UL4600
	E.1 UL4600 Sections
	E.2 Summary

	Appendix F Comparison with OECD Principles on AI
	F.1 Principles

	Appendix G Known Issues
	Appendix H Abbreviations
	Appendix I References
	Appendix J Contributors

	Back Cover

