1,099 research outputs found

    Interpretation of Absolute Laser Reflectance During Optical Monitoring of Polycrystalline GaAs Deposition on Quartz Using Metalorganic Chemical Vapor Deposition

    Get PDF
    Gallium arsenide was deposited by metal organic chemical vapor deposition in a horizontal quartz reactor tube using trimethylgallium and arsine at 400oC - 500oC. Nucleation time and deposition rate were monitored using in situ laser reflectometry. This allowed differentiation between film and parasitic growth, which was not possible with other optical techniques. An absolute reflectance model was developed using measurements prior to GaAs deposition, and then employed to calculate values for GaAs on quartz. Detected reflectance intensities during experimental GaAs deposition were low compared to the model due to 3-dimensional island growth, causing scattering of the incident laser radiation

    Cadmium Telluride Solar Cells on Ultrathin Glass for Space Applications

    Get PDF
    This paper details the preliminary findings of a study to achieve a durable thin film CdTe photovoltaic device structure onto ultra-thin space qualified cover glass. An aluminium doped zinc oxide (AZO) transparent conducting oxide (TCO) was deposited directly onto cover glass using metal organic chemical vapour deposition (MOCVD). The AZO demonstrated a low sheet resistance of 10 Ω/□ and high optical transparency of 85% as well as an excellent adherence and environmental stability. Preliminary deposition of the photovoltaic layers onto the AZO on cover glass, by MOCVD, showed the possibility of such a structure yielding a device conversion efficiency of 7.2 %. High series resistance (10 Ω.cm2) and low Voc (586 mV) were identified as the limiting factors when compared to the authors platform process on indium tin oxide (ITO) coated aluminosilicate. The coverage of the Cd1-xZnxS window layer along with the front contacting of the device was shown to be the major cause of the low efficiency. Further deposition of the AZO/CdTe employing an oxygen plasma cleaning step to the cover glass and evaporated gold front contacts significantly improved the device performance. A best conversion efficiency of 10.2 % with series resistance improved to 4.4 Ω.cm2 and open circuit voltage (Voc) up to 667 mV and good adhesion has demonstrated for the first time direct deposition of CdTe solar cells onto 100 μm thick space qualified cover glass

    CdCl2 treatment related diffusion phenomena in Cd1xZnxS/CdTe solar cells

    Get PDF
    Utilisation of wide bandgap Cd1_xZnxS alloys as an alternative to the CdS window layer is an attractive route to enhance the performance of CdTe thin film solar cells. For successful implementation, however, it is vital to control the composition and properties of Cd1_xZnxS through device fabrication processes involving the relatively high-temperature CdTe deposition and CdCl2 activation steps. In this study, cross-sectional scanning transmission electron microscopy and depth profiling methods were employed to investigate chemical and structural changes in CdTe/Cd1_xZnxS/CdS superstrate device structures deposited on an ITO/boro-aluminosilicate substrate. Comparison of three devices in different states of completion—fully processed (CdCl2 activated), annealed only (without CdCl2 activation), and a control (without CdCl2 activation or anneal)—revealed cation diffusion phenomena within the window layer, their effects closely coupled to the CdCl2 treatment. As a result, the initial Cd1_xZnxS/CdS bilayer structure was observed to unify into a single Cd1_xZnxS layer with an increased Cd/Zn atomic ratio; these changes defining the properties and performance of the Cd1_xZnxS/CdTe device

    Acute Effects of a Multi-Ingredient Pre-Workout Supplement On 5-KM Running Performance in Recreationally-Trained Athletes

    Get PDF
    International Journal of Exercise Science 12(2): 1045-1056, 2019. The purpose of the present study was to examine the effects of an acute dose of a multi-ingredient pre-workout supplement on 5-km running performance and subjective measures of fatigue. Twenty aerobically-trained, males (n= 10, mean ± SD = 80.8 ± 6.1 kg) and females (n= 10, 64.5 ± 6.6 kg) completed two 5-km running races for time in a double-blind, cross-over fashion. During the first session, subjects were randomly assigned to ingest the supplement or placebo 30 minutes prior to running a 5-km race. The supplement contained multiple ingredients including caffeine anhydrous (150 mg), beta alanine (1.6 g), and arginine alpha-ketoglutarate (AKG) (1.0 g). Subjects also completed a 5-point Likert scale (1 = low, 5 = high) questionnaire to determine feelings of fatigue immediately prior to ingesting the substance (baseline), 30 minutes post-ingestion (immediately pre-race), and 5 minutes post-race. For the second session, subjects ingested the opposite substance (supplement or placebo) and underwent the same testing procedures (including time of day) as the first session. The results indicated there was no significant (p\u3e 0.05) difference in 5-km race time between the supplement (23.62 ± 2.08 min) and placebo (23.51 ± 1.97 min) conditions. For the feelings of fatigue, there were no significant condition x time interactions or main effects for condition, but there were main effects for time. These findings indicated that the pre-workout supplement provided no ergogenic effect on 5-km race time or subjective feelings of fatigue when administered on an acute basis in aerobically-trained individuals

    Chemical analysis of Cd12xZnxS/CdTe solar cells by plasma profiling TOFMS

    Get PDF
    Thin film CdTe photovoltaic (PV) devices and reference layers obtained by the atmospheric pressure metalorganic vapour deposition (AP-MOCVD) method have been studied for their chemical structure using plasma profiling time-of-flight-mass spectroscopy (PP-TOFMS, also called glow discharge TOFMS). Different levels of arsenic (As) dopant in CdTe films were measured by PP-TOFMS and compared to results obtained from a more conventional depth profiling method (secondary ion mass spectrometry or SIMS). This comparison showed that PPTOFMS has the sufficient sensitivity towards detection of the As dopant in CdTe and hence is suited as a rapid, low vacuum tool in controlling the large scale production of CdTe PV materials

    MOCVD of Cd(1-x)Zn(x)S/CdTe PV cells using an ultra-thin absorber layer

    Get PDF
    Ultra-thin Cd(₁ ₋ ₓ)Zn(ₓ)S/CdTe devices were produced by atmospheric pressure metal organic chemical vapour deposition (AP-MOCVD) with varying CdTe absorber thicknesses ranging from 1.0 to 0.2 mm and compared to baseline cells with total CdTe thickness of 2.25μ. The ultra-thin CdTe layers (≤1 μm) were intentionally doped with As to induce p-type conductivity in the absorber. Cell performance reduced with CdTe thickness, with the magnitude of photo-current generation loss becoming more significant for the very thin CdTe layers. The decline in cell performance was lower than the optically limited performance relating to a decrease in shunt resistance, Rsh, especially for the thinnest cells due to areas of incomplete CdTe coverage and large presence of pin-holes leading to micro-shorts. Incorporation of Zn into the CdS window layer improved cell performance for all devices except when 0.2 μm thick CdTe was used. This improvement was markedly in the blue region owing to enhanced optical transparency of the window layer. External quantum efficiency (EQE) measurements showed a red-shift of the window layer absorption edge due to leaching out of Zn during the CdCl₂ treatment. Reduction of the CdCl₂ deposition time was demonstrated to recover the blue response of the ultra-thin cells

    Antithymocyte Globulin Plus G-CSF Combination Therapy Leads to Sustained Immunomodulatory and Metabolic Effects in a Subset of Responders With Established Type 1 Diabetes.

    Get PDF
    Low-dose antithymocyte globulin (ATG) plus pegylated granulocyte colony-stimulating factor (G-CSF) preserves β-cell function for at least 12 months in type 1 diabetes. Herein, we describe metabolic and immunological parameters 24 months following treatment. Patients with established type 1 diabetes (duration 4-24 months) were randomized to ATG and pegylated G-CSF (ATG+G-CSF) (N = 17) or placebo (N = 8). Primary outcomes included C-peptide area under the curve (AUC) following a mixed-meal tolerance test (MMTT) and flow cytometry. "Responders" (12-month C-peptide ≥ baseline), "super responders" (24-month C-peptide ≥ baseline), and "nonresponders" (12-month C-peptide < baseline) were evaluated for biomarkers of outcome. At 24 months, MMTT-stimulated AUC C-peptide was not significantly different in ATG+G-CSF (0.49 nmol/L/min) versus placebo (0.29 nmol/L/min). Subjects treated with ATG+G-CSF demonstrated reduced CD4+ T cells and CD4+/CD8+ T-cell ratio and increased CD16+CD56hi natural killer cells (NK), CD4+ effector memory T cells (Tem), CD4+PD-1+ central memory T cells (Tcm), Tcm PD-1 expression, and neutrophils. FOXP3+Helios+ regulatory T cells (Treg) were elevated in ATG+G-CSF subjects at 6, 12, and 18 but not 24 months. Immunophenotyping identified differential HLA-DR expression on monocytes and NK and altered CXCR3 and PD-1 expression on T-cell subsets. As such, a group of metabolic and immunological responders was identified. A phase II study of ATG+G-CSF in patients with new-onset type 1 diabetes is ongoing and may support ATG+G-CSF as a prevention strategy in high-risk subjects

    Evolution and biogeography of the endemic Roucela complex (Campanulaceae: Campanula) in the Eastern Mediterranean

    Get PDF
    At the intersection of geological activity, climatic fluctuations, and human pressure, the Mediterranean Basin – a hotspot of biodiversity – provides an ideal setting for studying endemism, evolution, and biogeography. Here, we focus on the Roucela complex (Campanula subgenus Roucela), a group of 13 bellflower species found primarily in the eastern Mediterranean Basin. Plastid and low-copy nuclear markers were employed to reconstruct evolutionary relationships and estimate divergence times within the Roucela complex using both concatenation and species tree analyses. Niche modeling, ancestral range estimation, and diversification analyses were conducted to provide further insights into patterns of endemism and diversification through time. Diversification of the Roucela clade appears to have been primarily the result of vicariance driven by the breakup of an ancient landmass. We found geologic events such as the formation of the mid-Aegean trench and the Messinian Salinity Crisis to be historically important in the evolutionary history of this group. Contrary to numerous past studies, the onset of the Mediterranean climate has not promoted diversification in the Roucela complex and, in fact, may be negatively affecting these species. This study highlights the diversity and complexity of historical processes driving plant evolution in the Mediterranean Basin

    Method for making a monolithic integrated high-T.sub.c superconductor-semiconductor structure

    Get PDF
    A method for the fabrication of active semiconductor and high-temperature perconducting devices on the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates
    corecore