108 research outputs found

    Principles and application of shock-tubes and shock tunnels

    Get PDF
    The principles, theoretical flow equations, calculation techniques, limitations and practical performance characteristics of basic and high performance shock tubes and shock tunnels are presented. Selected operating curves are included

    Circulating markers of arterial thrombosis and late-stage age-related macular degeneration: a case-control study.

    No full text
    PURPOSE: The aim of this study was to examine the relation of late-stage age-related macular degeneration (AMD) with markers of systemic atherothrombosis. METHODS: A hospital-based case-control study of AMD was undertaken in London, UK. Cases of AMD (n=81) and controls (n=77) were group matched for age and sex. Standard protocols were used for colour fundus photography and to classify AMD; physical examination included height, weight, history of or treatment for vascular-related diseases and smoking status. Blood samples were taken for measurement of fibrinogen, factor VIIc (FVIIc), factor VIIIc, prothrombin fragment F1.2 (F1.2), tissue plasminogen activator, and von Willebrand factor. Odds ratios from logistic regression analyses of each atherothrombotic marker with AMD were adjusted for age, sex, and established cardiovascular disease risk factors, including smoking, blood pressure, body mass index, and total cholesterol. RESULTS: After adjustment FVIIc and possibly F1.2 were inversely associated with the risk of AMD; per 1 standard deviation increase in these markers the odds ratio were, respectively, 0.62 (95% confidence interval 0.40, 0.95) and 0.71 (0.46, 1.09). None of the other atherothrombotic risk factors appeared to be related to AMD status. There was weak evidence that aspirin is associated with a lower risk of AMD. CONCLUSIONS: This study does not provide strong evidence of associations between AMD and systematic markers of arterial thrombosis, but the potential effects of FVIIc, and F1.2 are worthy of further investigation

    Adaptive Value of Phenological Traits in Stressful Environments: Predictions Based on Seed Production and Laboratory Natural Selection

    Get PDF
    Phenological traits often show variation within and among natural populations of annual plants. Nevertheless, the adaptive value of post-anthesis traits is seldom tested. In this study, we estimated the adaptive values of pre- and post-anthesis traits in two stressful environments (water stress and interspecific competition), using the selfing annual species Arabidopsis thaliana. By estimating seed production and by performing laboratory natural selection (LNS), we assessed the strength and nature (directional, disruptive and stabilizing) of selection acting on phenological traits in A. thaliana under the two tested stress conditions, each with four intensities. Both the type of stress and its intensity affected the strength and nature of selection, as did genetic constraints among phenological traits. Under water stress, both experimental approaches demonstrated directional selection for a shorter life cycle, although bolting time imposes a genetic constraint on the length of the interval between bolting and anthesis. Under interspecific competition, results from the two experimental approaches showed discrepancies. Estimation of seed production predicted directional selection toward early pre-anthesis traits and long post-anthesis periods. In contrast, the LNS approach suggested neutrality for all phenological traits. This study opens questions on adaptation in complex natural environment where many selective pressures act simultaneously

    Systemic Biomarkers of Neutrophilic Inflammation, Tissue Injury and Repair in COPD Patients with Differing Levels of Disease Severity

    Get PDF
    The identification and validation of biomarkers to support the assessment of novel therapeutics for COPD continues to be an important area of research. The aim of the current study was to identify systemic protein biomarkers correlated with measures of COPD severity, as well as specific protein signatures associated with comorbidities such as metabolic syndrome. 142 protein analytes were measured in serum of 140 patients with stable COPD, 15 smokers without COPD and 30 non-smoking controls. Seven analytes (sRAGE, EN-RAGE, NGAL, Fibrinogen, MPO, TGF-α and HB-EGF) showed significant differences between severe/very severe COPD, mild/moderate COPD, smoking and non-smoking control groups. Within the COPD subjects, univariate and multivariate analyses identified analytes significantly associated with FEV1, FEV1/FVC and DLCO. Most notably, a set of 5 analytes (HB-EGF, Fibrinogen, MCP-4, sRAGE and Sortilin) predicted 21% of the variability in DLCO values. To determine common functions/pathways, analytes were clustered in a correlation network by similarity of expression profile. While analytes related to neutrophil function (EN-RAGE, NGAL, MPO) grouped together to form a cluster associated with FEV1 related parameters, analytes related to the EGFR pathway (HB-EGF, TGF-α) formed another cluster associated with both DLCO and FEV1 related parameters. Associations of Fibrinogen with DLCO and MPO with FEV1/FVC were stronger in patients without metabolic syndrome (r  =  −0.52, p  = 0.005 and r  =  −0.61, p  = 0.023, respectively) compared to patients with coexisting metabolic syndrome (r  =  −0.25, p  = 0.47 and r  =  −0.15, p  = 0.96, respectively), and may be driving overall associations in the general cohort. In summary, our study has identified known and novel serum protein biomarkers and has demonstrated specific associations with COPD disease severity, FEV1, FEV1/FVC and DLCO. These data highlight systemic inflammatory pathways, neutrophil activation and epithelial tissue injury/repair processes as key pathways associated with COPD

    Natural Allelic Variation Defines a Role for ATMYC1: Trichome Cell Fate Determination

    Get PDF
    The molecular nature of biological variation is not well understood. Indeed, many questions persist regarding the types of molecular changes and the classes of genes that underlie morphological variation within and among species. Here we have taken a candidate gene approach based on previous mapping results to identify the gene and ultimately a polymorphism that underlies a trichome density QTL in Arabidopsis thaliana. Our results show that natural allelic variation in the transcription factor ATMYC1 alters trichome density in A. thaliana; this is the first reported function for ATMYC1. Using site-directed mutagenesis and yeast two-hybrid experiments, we demonstrate that a single amino acid replacement in ATMYC1, discovered in four ecotypes, eliminates known protein–protein interactions in the trichome initiation pathway. Additionally, in a broad screen for molecular variation at ATMYC1, including 72 A. thaliana ecotypes, a high-frequency block of variation was detected that results in >10% amino acid replacement within one of the eight exons of the gene. This sequence variation harbors a strong signal of divergent selection but has no measurable effect on trichome density. Homologs of ATMYC1 are pleiotropic, however, so this block of variation may be the result of natural selection having acted on another trait, while maintaining the trichome density role of the gene. These results show that ATMYC1 is an important source of variation for epidermal traits in A. thaliana and indicate that the transcription factors that make up the TTG1 genetic pathway generally may be important sources of epidermal variation in plants

    Cytokine Levels Correlate with Immune Cell Infiltration after Anti-VEGF Therapy in Preclinical Mouse Models of Breast Cancer

    Get PDF
    The effect of blocking VEGF activity in solid tumors extends beyond inhibition of angiogenesis. However, no studies have compared the effectiveness of mechanistically different anti-VEGF inhibitors with respect to changes in tumor growth and alterations in the tumor microenvironment. In this study we use three distinct breast cancer models, a MDA-MB-231 xenograft model, a 4T1 syngenic model, and a transgenic model using MMTV-PyMT mice, to explore the effects of various anti-VEGF therapies on tumor vasculature, immune cell infiltration, and cytokine levels. Tumor vasculature and immune cell infiltration were evaluated using immunohistochemistry. Cytokine levels were evaluated using ELISA and electrochemiluminescence. We found that blocking the activation of VEGF receptor resulted in changes in intra-tumoral cytokine levels, specifically IL-1β, IL-6 and CXCL1. Modulation of the level these cytokines is important for controlling immune cell infiltration and ultimately tumor growth. Furthermore, we demonstrate that selective inhibition of VEGF binding to VEGFR2 with r84 is more effective at controlling tumor growth and inhibiting the infiltration of suppressive immune cells (MDSC, Treg, macrophages) while increasing the mature dendritic cell fraction than other anti-VEGF strategies. In addition, we found that changes in serum IL-1β and IL-6 levels correlated with response to therapy, identifying two possible biomarkers for assessing the effectiveness of anti-VEGF therapy in breast cancer patients

    Giants on the landscape: modelling the abundance of megaherbivorous dinosaurs of the Morrison Formation (Late Jurassic, western USA)

    Full text link

    Strategies for the Use of Fallback Foods in Apes

    Get PDF
    Researchers have suggested that fallback foods (FBFs) shape primate food processing adaptations, whereas preferred foods drive harvesting adaptations, and that the dietary importance of FBFs is central in determining the expression of a variety of traits. We examine these hypotheses in extant apes. First, we compare the nature and dietary importance of FBFs used by each taxon. FBF importance appears greatest in gorillas, followed by chimpanzees and siamangs, and least in orangutans and gibbons (bonobos are difficult to place). Next, we compare 20 traits among taxa to assess whether the relative expression of traits expected for consumption of FBFs matches their observed dietary importance. Trait manifestation generally conforms to predictions based on dietary importance of FBFs. However, some departures from predictions exist, particularly for orang-utans, which express relatively more food harvesting and processing traits predicted for consuming large amounts of FBFs than expected based on observed dietary importance. This is probably due to the chemical, mechanical, and phenological properties of the apes’ main FBFs, in particular high importance of figs for chimpanzees and hylobatids, compared to use of bark and leaves—plus figs in at least some Sumatran populations—by orang-utans. This may have permitted more specialized harvesting adaptations in chimpanzees and hylobatids, and required enhanced processing adaptations in orang-utans. Possible intercontinental differences in the availability and quality of preferred and FBFs may also be important. Our analysis supports previous hypotheses suggesting a critical influence of the dietary importance and quality of FBFs on ape ecology and, consequently, evolution

    Genome Wide DNA Copy Number Analysis of Serous Type Ovarian Carcinomas Identifies Genetic Markers Predictive of Clinical Outcome

    Get PDF
    Ovarian cancer is the fifth leading cause of cancer death in women. Ovarian cancers display a high degree of complex genetic alterations involving many oncogenes and tumor suppressor genes. Analysis of the association between genetic alterations and clinical endpoints such as survival will lead to improved patient management via genetic stratification of patients into clinically relevant subgroups. In this study, we aim to define subgroups of high-grade serous ovarian carcinomas that differ with respect to prognosis and overall survival. Genome-wide DNA copy number alterations (CNAs) were measured in 72 clinically annotated, high-grade serous tumors using high-resolution oligonucleotide arrays. Two clinically annotated, independent cohorts were used for validation. Unsupervised hierarchical clustering of copy number data derived from the 72 patient cohort resulted in two clusters with significant difference in progression free survival (PFS) and a marginal difference in overall survival (OS). GISTIC analysis of the two clusters identified altered regions unique to each cluster. Supervised clustering of two independent large cohorts of high-grade serous tumors using the classification scheme derived from the two initial clusters validated our results and identified 8 genomic regions that are distinctly different among the subgroups. These 8 regions map to 8p21.3, 8p23.2, 12p12.1, 17p11.2, 17p12, 19q12, 20q11.21 and 20q13.12; and harbor potential oncogenes and tumor suppressor genes that are likely to be involved in the pathogenesis of ovarian carcinoma. We have identified a set of genetic alterations that could be used for stratification of high-grade serous tumors into clinically relevant treatment subgroups

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems
    • …
    corecore