10 research outputs found

    Genome-wide analysis of intraspecific transposon diversity in yeast

    Get PDF
    BACKGROUND: In the model organism Saccharomyces cerevisiae, the transposable elements (TEs) consist of LTR (Long Terminal Repeat) retrotransposons called Ty elements belonging to five families, Ty1 to Ty5. They take the form of either full-length coding elements or non-coding solo-LTRs corresponding to remnants of former transposition events. Although the biological features of Ty elements have been studied in detail in S. cerevisiae and the Ty content of the reference strain (S288c) was accurately annotated, the Ty-related intra-specific diversity has not been closely investigated so far. RESULTS: In this study, we investigated the Ty contents of 41 available genomes of isolated S. cerevisiae strains of diverse geographical and ecological origins. The strains were compared in terms of the number of Ty copies, the content of the potential transpositionally active elements and the genomic insertion maps. The strain repertoires were also investigated in the closely related Ty1 and Ty2 families and subfamilies. CONCLUSIONS: This is the first genome-wide analysis of the diversity associated to the Ty elements, carried out for a large set of S. cerevisiae strains. The results of the present analyses suggest that the current Ty-related polymorphism has resulted from multiple causes such as differences between strains, between Ty families and over time, in the recent transpositional activity of Ty elements. Some new Ty1 variants were also identified, and we have established that Ty1 variants have different patterns of distribution among strains, which further contributes to the strain diversity

    Evolutionary dynamics of hAT DNA transposon families in Saccharomycetaceae

    Get PDF
    Transposable elements (TEs) are widespread in eukaryotes but uncommon in yeasts of the Saccharomycotina subphylum, in terms of both host species and genome fraction. The class II elements are especially scarce, but the hAT element Rover is a noteworthy exception that deserves further investigation. Here, we conducted a genome-wide analysis of hAT elements in 40 ascomycota. A novel family, Roamer, was found in three species, whereas Rover was detected in 15 preduplicated species from Kluyveromyces, Eremothecium, and Lachancea genera, with up to 41 copies per genome. Rover acquisition seems to have occurred by horizontal transfer in a common ancestor of these genera. The detection of remote Rover copies in Naumovozyma dairenensis and in the sole Saccharomyces cerevisiae strain AWRI1631, without synteny, suggests that two additional independent horizontal transfers took place toward these genomes. Such patchy distribution of elements prevents any anticipation of TE presence in incoming sequenced genomes, even closely related ones. The presence of both putative autonomous and defective Rover copies, as well as their diversification into five families, indicate particular dynamics of Rover elements in the Lachancea genus. Especially, we discovered the first miniature inverted-repeat transposable elements (MITEs) to be described in yeasts, together with their parental autonomous copies. Evidence of MITE insertion polymorphism among Lachancea waltii strains suggests their recent activity. Moreover, 40% of Rover copies appeared to be involved in chromosome rearrangements, showing the large structural impact of TEs on yeast genome and opening the door to further investigations to understand their functional and evolutionary consequences

    Influence of genetic background on the occurrence of chromosomal rearrangements in Saccharomyces cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromosomal rearrangements such as duplications and deletions are key factors in evolutionary processes because they promote genomic plasticity. Although the genetic variations in the <it>Saccharomyces cerevisiae </it>species have been well documented, there is little known to date about the impact of the genetic background on the appearance of rearrangements.</p> <p>Results</p> <p>Using the same genetic screening, the type of rearrangements and the mutation rates observed in the S288c <it>S. cerevisiae </it>strain were compared to previous findings obtained in the FL100 background. Transposon-associated rearrangements, a major chromosomal rearrangement event selected in FL100, were not detected in S288c. The mechanisms involved in the occurrence of deletions and duplications in the S288c strain were also tackled, using strains deleted for genes implicated in homologous recombination (HR) or non-homologous end joining (NHEJ). Our results indicate that an Yku80p-independent NHEJ pathway is involved in the occurrence of these rearrangements in the S288c background.</p> <p>Conclusion</p> <p>The comparison of two different <it>S</it>. <it>cerevisiae </it>strains, FL100 and S288c, allowed us to conclude that intra-species genomic variations have an important impact on the occurrence of chromosomal rearrangement and that this variability can partly be explained by differences in Ty1 retrotransposon activity.</p

    Cell-to-Cell Movement of Beet Necrotic Yellow Vein Virus: I. Heterologous Complementation Experiments Provide Evidence for Specific Interactions Among the Triple Gene Block Proteins

    No full text
    International audienceCell-to-cell movement of beet necrotic yellow vein virus (BNYVV) requires three proteins encoded by a triple gene block (TGB) on viral RNA 2. A BNYVV RNA 3-derived replicon was used to express movement proteins of other viruses and the ability of these proteins to functionally substitute for the BNYVV TGB proteins was tested by coinoculation of TGB-defective BNYVV with the various replicons to Chenopodium quinoa. Trans-heterocomplementation was successful with the movement protein (P30) of tobacco mosaic virus but not with the tubule-forming movement proteins of alfalfa mosaic virus and grapevine fanleaf virus. Trans-complementation of BNYVV movement was also observed when all three TGB proteins of the distantly related peanut clump virus were supplied together but not when they were substituted for their BNYVV counterparts one by one. When P30 was used to drive BNYVV movement in trans, accumulation of the first TGB protein of BNYVV was adversely affected by null mutations in the second and third TGB proteins. Taken together, these results suggest that highly specific interactions among cognate TGB proteins are important for their function and/or stability in planta

    The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux.

    No full text
    The NHA1 gene of Saccharomyces cerevisiae, transcribed into a 3.5 kb mRNA, encodes a protein mediating Na+ and K+ efflux through the plasma membrane that is required for alkali cation tolerance at acidic pH. Deletion of the gene in a wild-type strain resulted in higher sensitivity to both K+ and Na+ at acidic pH. Measurements of cation loss in strains carrying deleted or overexpressed alleles of NHA1 demonstrated its role in K+ and Na+ efflux. In addition, high K+ and Na+ efflux observed upon alkalinization of the cytoplasm implies a role of Nha1p in the regulation of intracellular pH. Moreover, the overexpression of ENA1 and NHA1 genes in an ena1-4 delta-nha1 delta strain showed that the Nha1 alkalication antiporter is responsible for growth on high concentrations of KCl and NaCl at acidic pH, and Ena alkali-cation ATPases are necessary at higher pH values. Both systems have a complementary action to maintain the intracellular steady-state concentration of K+ and Na+.journal articleresearch support, non-u.s. gov't1998 Octimporte

    High-quality genome of the basidiomycete yeast Dioszegia hungarica PDD-24b-2 isolated from cloud water

    No full text
    Abstract The genome of the basidiomycete yeast Dioszegia hungarica strain PDD-24b-2 isolated from cloud water at the summit of puy de Dôme (France) was sequenced using a hybrid PacBio and Illumina sequencing strategy. The obtained assembled genome of 20.98 Mb and a GC content of 57% is structured in 16 large-scale contigs ranging from 90 kb to 5.56 Mb, and another 27.2 kb contig representing the complete circular mitochondrial genome. In total, 8,234 proteins were predicted from the genome sequence. The mitochondrial genome shows 16.2% cgu codon usage for arginine but has no canonical cognate tRNA to translate this codon. Detected transposable element (TE)-related sequences account for about 0.63% of the assembled genome. A dataset of 2,068 hand-picked public environmental metagenomes, representing over 20 Tbp of raw reads, was probed for D. hungarica related ITS sequences, and revealed worldwide distribution of this species, particularly in aerial habitats. Growth experiments suggested a psychrophilic phenotype and the ability to disperse by producing ballistospores. The high-quality assembled genome obtained for this D. hungarica strain will help investigate the behavior and ecological functions of this species in the environment

    The Ty1 LTR-retrotransposon population in Saccharomyces cerevisiae genome: dynamics and sequence variations during mobility.

    No full text
    Transposable element (TE) evolution in genomes has mostly been deduced from comparative genome analyses. TEs often account for a large proportion of the eukaryotic nuclear genome (up to 50%, depending on the species). Among the many existing genomic copies, only a small fraction may contribute to the mobility of a TE family. We have identified here, using a genetic screening procedure to trap Ty1 long terminal repeat-retrotransposon insertions in Saccharomyces cerevisiae, which among the populations of resident Ty1 copies are responsible for Ty1 mobility. Although the newly inserted Ty1 copies resulting from a single round of transposition were found to originate from a limited subset of Ty1 resident copies, they showed a high degree of diversity at the nucleotide level, mainly due to the reverse transcription-mediated recombination. In this process, highly expressed and strikingly nonautonomous mutant Ty1 were found to be the most frequently used resident copies, which suggests that nonautonomous elements play a key role in the dynamics of the Ty1 family.journal articleresearch support, non-u.s. gov't2011 Jun2011 02 18importe
    corecore