61 research outputs found

    Small Mammal Activity Alters Plant Community Composition and Microbial Activity in an Old-Field Ecosystem

    Get PDF
    Herbivores modify their environment by consuming plant biomass and redistributing materials across the landscape. While small mammalian herbivores, such as rodents, are typically inconspicuous, their impacts on plant community structure and chemistry can be large. We used a small mammal exclosure experiment to explore whether rodents in a southeastern old field directly altered the above ground plant species composition and chemistry, and indirectly altered the below ground soil community composition and activity. In general, when rodents were excluded, C3 graminoids increased in cover and biomass, contributing toward a shift in plant species composition relative to plots where rodents were present. The plant community chemistry also shifted; plant fiber concentration and carbon : nitrogen were higher, whereas plant nitrogen concentration was lower in exclosure plots relative to access plots. While microbial community enzyme activity increased when rodents were excluded, no significant changes in the fungal : bacterial or potential nitrogen mineralization occurred between treatments. Our results show that rodents can rapidly influence aboveground plant community composition and chemistry, but their influence on below ground processes may require plant inputs to the soil to accumulate over longer periods of time

    Variation in the methods leads to variation in the interpretation of biodiversity–ecosystem multifunctionality relationships

    Get PDF
    Aims Biodiversity is often positively related to the capacity of an ecosystem to provide multiple functions simultaneously (i.e. multifunctionality). However, there is some controversy over whether biodiversity–multifunctionality relationships depend on the number of functions considered. Particularly, investigators have documented contrasting findings that the effects of biodiversity on ecosystem multifunctionality do not change or increase with the number of ecosystem functions. Here, we provide some clarity on this issue by examining the statistical underpinnings of different multifunctionality metrics. Methods We used simulations and data from a variety of empirical studies conducted across spatial scales (from local to global) and biomes (temperate and alpine grasslands, forests and drylands). We revisited three methods to quantify multifunctionality including the averaging approach, summing approach and threshold-based approach. Important Findings Biodiversity–multifunctionality relationships either did not change or increased as more functions were considered. These results were best explained by the statistical underpinnings of the averaging and summing multifunctionality metrics. Specifically, by averaging the individual ecosystem functions, the biodiversity–multifunctionality relationships equal the population mean of biodiversity-single function relationships, and thus will not change with the number of functions. Likewise, by summing the individual ecosystem functions, the strength of biodiversity–multifunctionality relationships increases as the number of functions increased. We proposed a scaling standardization method by converting the averaging or summing metrics into a scaling metric, which would make comparisons among different biodiversity studies. In addition, we showed that the range-relevant standardization can be applied to the threshold-based approach by solving for the mathematical artefact of the approach (i.e. the effects of biodiversity may artificially increase with the number of functions considered). Our study highlights different approaches yield different results and that it is essential to develop an understanding of the statistical underpinnings of different approaches. The standardization methods provide a prospective way of comparing biodiversity–multifunctionality relationships across studies.This work was supported by the National Natural Science Foundation of China (31600428) to X.J. and a Semper Ardens grant from Carlsberg Foundation to N.J.S. F.T.M. and the global drylands dataset were supported by the European Research Council (ERC Grant Agreements 242658 [BIOCOM] and 647038 [BIODESERT])

    Root Bacterial Endophytes Alter Plant Phenotype, but not Physiology

    Get PDF
    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. We chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light–Asat, and saturating CO2–Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host

    Beyond the black box: Promoting mathematical collaborations for elucidating interactions in soil ecology

    Get PDF
    © 2019 The Authors. Understanding soil systems is critical because they form the structural and nutritional foundation for plants and thus every terrestrial habitat and agricultural system. In this paper, we encourage increased use of mathematical models to drive forward understanding of interactions in soil ecological systems. We discuss several distinctive features of soil ecosystems and empirical studies of them. We explore some perceptions that have previously deterred more extensive use of models in soil ecology and some advances that have already been made using models to elucidate soil ecological interactions. We provide examples where mathematical models have been used to test the plausibility of hypothesized mechanisms, to explore systems where experimental manipulations are currently impossible, or to determine the most important variables to measure in experimental and natural systems. To aid in the development of theory in this field, we present a table describing major soil ecology topics, the theory previously used, and providing key terms for theoretical approaches that could potentially address them. We then provide examples from the table that may either contribute to important incremental developments in soil science or potentially revolutionize our understanding of plant-soil systems. We challenge scientists and mathematicians to push theoretical explorations in soil systems further and highlight three major areas for the development of mathematical models in soil ecology: Theory spanning scales and ecological hierarchies, processes, and evolution

    Climate Change Alters Seedling Emergence and Establishment in an Old-Field Ecosystem

    Get PDF
    Background: Ecological succession drives large-scale changes in ecosystem composition over time, but the mechanisms whereby climatic change might alter succession remain unresolved. Here, we asked if the effects of atmospheric and climatic change would alter tree seedling emergence and establishment in an old-field ecosystem, recognizing that small shifts in rates of seedling emergence and establishment of different species may have long-term repercussions on the transition of fields to forests in the future. Methodology/Principal Findings: We introduced seeds from three early successional tree species into constructed old-field plant communities that had been subjected for 4 years to altered temperature, precipitation, and atmospheric CO 2 regimes in an experimental facility. Our experiment revealed that different combinations of atmospheric CO2 concentration, air temperature, and soil moisture altered seedling emergence and establishment. Treatments directly and indirectly affected soil moisture, which was the best predictor of seedling establishment, though treatment effects differed among species. Conclusions: The observed impacts, coupled with variations in the timing of seed arrival, are demonstrated as predictors o

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
    • 

    corecore