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SYNTHESIS & INTEGRATION

Beyond the black box: promoting mathematical collaborations for
elucidating interactions in soil ecology
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Abstract. Understanding soil systems is critical because they form the structural and nutritional foundation
for plants and thus every terrestrial habitat and agricultural system. In this paper, we encourage increased use
of mathematical models to drive forward understanding of interactions in soil ecological systems. We discuss
several distinctive features of soil ecosystems and empirical studies of them. We explore some perceptions that
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have previously deterred more extensive use of models in soil ecology and some advances that have already
been made using models to elucidate soil ecological interactions. We provide examples where mathematical
models have been used to test the plausibility of hypothesized mechanisms, to explore systems where experi-
mental manipulations are currently impossible, or to determine the most important variables to measure in
experimental and natural systems. To aid in the development of theory in this field, we present a table describ-
ing major soil ecology topics, the theory previously used, and providing key terms for theoretical approaches
that could potentially address them. We then provide examples from the table that may either contribute to
important incremental developments in soil science or potentially revolutionize our understanding of
plant–soil systems. We challenge scientists and mathematicians to push theoretical explorations in soil systems
further and highlight three major areas for the development of mathematical models in soil ecology: theory
spanning scales and ecological hierarchies, processes, and evolution.

Key words: ecological hierarchy; evolution; mathematical model; plant–soil interactions; soil ecology; soil processes;
theory.
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Understanding soil systems, the structural and
nutritional foundation for plants and thus every
terrestrial habitat and agricultural system, is of
utmost importance. Here, we promote mathe-
matical modeling as a tool that can help revolu-
tionize understanding of patterns and processes
in soil systems. We argue that true collaborations
and effective communication between mathe-
maticians and soil biologists as well as training
the next generation of students are needed to
address topics that will impact global research
challenges such as food security, climate change
mitigation, biodiversity conservation, and inva-
sive species eradication.

Theoretical models (qualitative and quantita-
tive, conceptual and empirical) have long been
drivers of understanding in population biology,
evolution, and ecology (Levins 1966, Weisberg
2006, Pickett et al. 2007, Servedio et al. 2014).
The ideal for mathematical models is that they
should be applicable or capture the essence of a
broad set of situations (general), yield results that
match real-life situations (realistic), and produce
precise predictions given a specific set of inputs
(precision). Levins (1966) argued that it is not
possible to maximize all three traits and that
there must be trade-offs between them. Despite
advances in technology making complex models
more manageable, some of these trade-offs

remain (Evans 2012). The consequence of these
trade-offs is that while models can be powerful
tools to promote understanding and predictabil-
ity in complex systems, the appropriate model
must be selected for the question and system
being addressed. However, fewer of these devel-
oped models have focused on soil systems (Barot
et al. 2007), and in this paper, we advocate for
mathematical models as expressions of quantita-
tive theory, be it empirical or conceptual, as pow-
erful tools for increasing understanding of soil
systems. We use the term mathematical models
to refer to the broad array of models using differ-
ent mathematical, statistical, and computational
approaches to incorporate assumptions about
the behavior of a system.
Here we encourage soil ecologists to develop

collaborations and expand the use of mathemati-
cal models to understand processes, evolution,
and interactions within soil systems. This paper is
not a comprehensive review of the field of mathe-
matical modeling in soil ecology, but instead a
perspectives paper highlighting new directions.
While we apply our concerns in this paper to soil
systems, many of these questions have been
raised in other systems (e.g., food web theory;
DeAngelis et al. 1983, Polis and Winemiller 1996,
de Ruiter et al. 2006, Moore et al. 2017), and we
expect that advance modeling of soil systems will
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promote advances in modeling in other fields as
well. To that end, the paper is structured to first
examine the challenges that may have historically
limited modeling in soil ecology, followed by sev-
eral brief case studies of how mathematical mod-
eling has led to step changes in our
understanding of soil systems, and finally, we
highlight several avenues by which mathematical
models could further our understanding of soil
ecology to an even greater extent.

OVERCOME CHALLENGES TO THE APPLICATION
OF MATHEMATICAL MODELING TO SOIL
ECOLOGY

Until the last few decades, soils were viewed
as a unique environment that created challenges
for mathematical modeling (Vereecken et al.
2016), and there are still fewer modeling papers
in soil ecology journals relative to other fields of
ecology and evolution (Barot et al. 2007). How-
ever, many of these challenges are either analo-
gous to similar challenges or also exist in other
ecological and evolutionary systems and were
easily overcome, as described below.

One challenge derived from the fact that soil
systems are not homogeneous and contain high
spatial variability at multiple scales, driven by
complex interactions among soil forming factors.
Authors have argued that the great spatial vari-
ability and lack of isolated simple species interac-
tions limit our ability to model species interactions
in soil systems (Bardgett and van der Putten 2014).
In addition to abiotic variability, we know little
about the spatial heterogeneity in the distribution
of organisms. Structurally, soils are composed of
peds (clumps of soil) whose shape and size are
influenced by abiotic factors such as pH, soil tex-
ture and moisture, or the proportion of sand, silt,
and clay; and biotic factors such as organic matter
content and the structure and composition of soil
biota. These factors interact to influence the trans-
port of water, air, and heat in soils. The stability
and structure of peds are also influenced by
processes occurring in the rhizosphere including
biotic processes such as decomposition and move-
ment, and ecological interactions among soil biota,
including soil fauna, bacteria, mycorrhizal fungi,
and plant roots (reviewed in Hinsinger et al. 2009,
Philippot et al. 2013, Platt et al. 2016, Porre et al.
2016). The pronounced spatial variability among

peds causes complex soil pore structures which
create microenvironments that can alter the distri-
bution of organisms and outcome of species inter-
actions which may be perceived to be difficult to
include in mathematical models. However, other
ecological systems also demonstrate high spatial
variability, yet models still provide useful insight
and informative predictions in those systems. For
instance, spatial variation can alter predator–prey
interactions in aquatic systems (Sanford et al.
2003, Sanford and Worth 2009) and modeling
showed that spatial heterogeneity can lead to the
coexistence of more species than a homogeneous
environment (Kneitel and Chase 2004). Within soil
systems, stochastic individual-based models have
been used to model multiple microbial processes
(i.e., physiological and ecological) at multiple
levels of different types of soil complexity (Locey
et al. 2017). Thus, previous modeling efforts have
overcome this challenge, but there is enormous
scope for further development of mathematical
models accounting for the great spatial variability
in soils.
Another challenge is the perception that below-

ground systems cannot be described using simple
models. Much belowground research focuses on
communities of organisms or food webs (Bennett
2010, Guttman et al. 2014, Mine et al. 2014, Shi
et al. 2016) rather than individual species, espe-
cially with the advance of -omics techniques and
the study of soil microbiomes (Alivisatos et al.
2015). This research has revealed extensive inter-
dependence among organisms, and that many
mutualisms consist of guilds (Stanton 2003) of
multiple interacting species (e.g., rhizobia;
Lemaire et al. 2015). Models typically focus on
the interaction of limited numbers of variables iso-
lated from the rest of their environment. The
influence of other effects is assumed to be weak in
comparison with the interactions under consider-
ation, justifying their omission from the model. A
classic example of this is the Lotka-Volterra model
of predator–prey interactions, in which only two
variables (one representing the predator and one
the prey) are modeled. Differences between
model predictions and real-world observations
can then illuminate additional factors of impor-
tance. Thus, from simple beginnings, models of
many systems have evolved to reflect more intri-
cate interactions. For instance, the inclusion of
other predators such as wolves improves the fit of
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the classic Lotka-Volterra model applied to lynx
and hare dynamics (Stenseth et al. 1997). Thus,
even simple mathematical models can provide
insight into the functioning of richly interacting
systems like these and soil systems that may at
first sight appear too complex to model.

Historically, the majority of mathematical
modeling in soil has focused on organisms of
economic interest, such as pathogens of crops
(e.g., take-all fungus in winter wheat; Brassett
and Gilligan 1989, Heritage et al. 1989, Gilligan
and Brassett 1990, Werker et al. 1991, Gilligan
1994, 1995, Gilligan et al. 1994, Colbach and
Huet 1995, Bailey and Gilligan 1999, Schoeny
and Lucas 1999, Ennaifar et al. 2007, Bailey et al.
2009, Gosme and Lucas 2009, Gosme et al. 2013),
and this lopsided emphasis may have limited the
use of models to describe processes across both
managed and unmanaged systems. Many practi-
cal models (calibrated to specific data sets), such
as soil–plant–atmosphere models (SPAM), often
focus on abiotic instead of biotic factors (re-
viewed in Manzoni et al. 2013). These models
make useful predictions for agricultural systems,
which are often relatively simple (e.g., fewer
plant species, controlled inputs), but may be less
informative about processes in unmanaged sys-
tems. Also, a heavy focus on applied predictive
modeling has limited the range of theoretical
questions asked in soil ecology (Bradford and
Fierer 2012). For example, there are fewer models
of soil predator–prey interactions (Brown et al.
2004, Tully et al. 2005, Neutel et al. 2007,
Hohberg and Traunspurger 2009, Kalinkat et al.
2013) than there are models of plant–soil patho-
gen interactions (see citations above for example
of models of the take-all fungus in winter wheat).
The development of additional models for man-
aged and natural systems will promote better
understanding of all soil systems.

There was also, historically, a perception that
mechanisms driving belowground interactions
might differ from the mechanisms driving above-
ground interactions. However, while scales and
organism sizes may differ, many of the same pro-
cesses that drive aboveground dynamics (e.g.,
herbivory, predation, mutualisms, pathogen
attacks, parasitism) also affect belowground
dynamics (Chang et al. 2016). Admittedly, entire
categories of organisms (e.g., decomposers) are
more common, or at least more easily or

frequently identified, belowground than above-
ground. One goal of simplified models is there-
fore to understand new possible mechanisms; for
example, models of belowground functions that
include decomposers (or the outcome of their
activities; e.g., Moore et al. 2014, 2015a, b). Thus,
in some cases, models have already been devel-
oped to help determine whether there are differ-
ences between the mechanisms driving above vs.
belowground processes.
A final challenge is that measurements in soil

systems are often problematic. Most soil organ-
isms are difficult to see, identify, and culture, and
many types of measurements are destructive. As
a result, gathering data to quantify even the most
fundamental characteristics or mechanisms, such
as fitness or quantifying precise resource
exchange values between organisms, is difficult
for many soil organisms. Estimating fitness is
often the first step to modeling population
growth or evolutionary processes and is crucial
to understanding how other organisms or abiotic
factors influence those dynamics. Above ground,
we may be able to estimate the fitness of plants or
animals by observing them directly, but below-
ground collection of even the simplest fitness
data may be a challenge. However, new technolo-
gies, such as -omics approaches, are leading to a
rapidly expanding base of knowledge in soils
(reviewed in Alivisatos et al. 2015), which is
beginning to address this problem. In addition,
the problem of parameter estimation is far from
unique to soil systems. This may make predictive
modeling challenging, but strategic models
(which seek to capture key features of a system
rather than the fine detail) can identify which
mechanisms and parameters have the greatest
influence on the system and can explore suites of
possible system dynamics under realistic
assumptions. This approach may either allow us
to put bounds on key parameter values or on the
possible ways in which a system may behave.

NOTABLE INSIGHTS FROM MATHEMATICAL
MODELS EXPLORING SOIL ECOLOGY

As highlighted above mathematical modeling
has already helped to drive advances in
our understanding of belowground systems
(Table 1). While these successes are just the
beginning, they highlight the many possibilities
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for utilizing mathematical models to improve
our understanding of soil organisms, interac-
tions, and processes in managed and unmanaged
systems.

Here we provide three categories of examples
where models have already provided insight into
soil systems, and in the following section, we
highlight how modeling could help make both
incremental and revolutionary shifts in our
understanding. A more comprehensive list of
approaches can be found in Table 1, but the
examples below have been chosen because they
provided new insights that allowed a step
change in our understanding of soil systems,
interactions, and functions.

First, mathematical models can be used to
explore systems in which experimental manipu-
lations are impossible. In soil, there are many
cases of systems where we cannot manipulate
organisms individually, limit resources, or alter
interactions, but in principle, such interventions
can be modeled. For example, in extensively
modeled nutrient mutualisms (e.g., mycorrhizal
fungi, rhizobia) we cannot experimentally
manipulate how much resource is exchanged
between organisms, but we can gain insight from
models that identify variables of key interest to
test about that resource exchange (Schwartz and
Hoeksema 1998, Hoeksema and Schwartz 2003,
Kiers and van der Heijden 2006, Kummel and
Salant 2006, Kiers and Denison 2008, Landis and
Fraser 2008, Cowden and Peterson 2009, Akc�ay
and Simms 2011, Grman et al. 2012, Wyatt et al.
2014, Bever 2015, Jiang et al. 2017). The literature
also recommends a number of resources for
developing future models in soil nutrient mutu-
alisms (Friesen and Jones 2012, Akc�ay 2015,
Holland 2015). Also, given that a large number
of organisms in soil are currently unculturable,
we typically cannot experimentally add or
remove specific organisms to examine commu-
nity assembly or function. However, we can
model changes in species or functional groups
within the community. For example, host-specific
changes in soil microbial composition have been
connected to the outcome of plant–plant interac-
tions through feedback theory (Bever et al. 1997,
Bever 2003, Revilla et al. 2012), which has led to
novel insights into forces structuring plant com-
munities (Mangan et al. 2010, Bever et al. 2015,
Bennett et al. 2017, Jiang et al. 2017, Teste et al.

2017). There are also more in-depth discussions
of modeling in microbial communities in general
(Zaccaria et al. 2017). It is also likely that micro-
bial community composition has large effects on
decomposition (McGuire and Treseder 2010, Bot-
tomley et al. 2012, van der Wal et al. 2013), but
manipulating individual members or species of
the decomposer community is virtually impossi-
ble. To address this issue, models of decomposi-
tion have split the decomposer community into
two major functional groups: fungi, which are
more effective at breaking down recalcitrant
pools of detritus, and bacteria, which are more
effective at breaking down labile pools (Moore
et al. 2003, 2004, Fan and Liang 2015). These
groups have been proposed to form the basis of a
compartmentalization of soil food webs into
slow and fast energy channels, and theory sug-
gests that the coupling of such channels may
serve to stabilize communities by reducing the
propensity for oscillations in species densities
(McCann et al. 1998, Rooney et al. 2006, Rooney
and McCann 2012). Other types of modeling
approaches for understanding decomposition
have also been used (Manzoni and Porporato
2009, Campbell and Paustian 2015). This particu-
lar modeling effort, combined with empirical
research, has developed an important paradigm
in soil biology: The ratio of fungi to bacteria is
thought to be predictive of the function of
decomposition in soil systems (Strickland and
Rousk 2010, Wall et al. 2010). While the compart-
mentalization of soil food webs into slow and
fast energy channels is now well accepted both
by empiricists and modelers, here the modeling
by McCann and Rooney showed that these two
compartments, while separate, feed into each
other creating a consistent decomposition pro-
cess. This interdependence is impossible to test
empirically under all but the most artificial and
unrealistic conditions, and thus, this mathemati-
cal modeling approach has played a key role in
our understanding of decomposition.
Another contribution of mathematical models

to exploring systems in which experimental
manipulations are impossible is by helping us
scale up from the micro- or mesocosm scale at
which experiments are typically conducted to
larger natural systems about which we need to
make predictions. This is one goal of models
which incorporate experimentally measured
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Table 1. Major areas (and questions within those areas) of soil ecology, theory previously used to address those
areas, and potential future theoretical approaches.

Area Example Questions Examples of Theory Used Potential Theoretical Approaches

Hierarchy/Scale
Ecosystems How do plants transport

compounds from soils to
atmosphere?

Soil–plant–atmosphere model
(SPAM)

Integrative whole plant physiology
that moves across phases (soil–plant–
atmosphere)
Individual-based models

What functional groupings predict
ecosystem processes?

Food web models
incorporating N
mineralization and detritus
decomposition

Integrate food web and ecosystem
models

What level of taxonomic resolution
is needed?
What information on
belowground organisms is
necessary to project how global
changes affect agricultural
production and natural systems
succession?

Niche models using Genetic
Algorithm for Rule-Set
Prediction (GARP) predict
species responses to climate
change

Apply biophysical species range
models to soil organisms

Stoichiometry Apply niche models to decomposers/
producers
Integrate differential movement rates
and biotic niches into spatial models
Trait-based approaches
Ecosystem multifunctionality

How can soils be manipulated for
restoration/agriculture?

Simulation modeling (not soil
focused)

Bioeconomic models for restoration

Ecosystem engineers (not soil
specific)
Threshold models
Alternative ecosystem states

How do small scale soil processes
influence net effects across large
spatial scales?

Homogenization theory

Communities How do soil microbes structure or
mediate plant community
dynamics?

Resource ratio theory Integrate resource ratio theory with
biotic feedbacks

R� (resource complementarity) Bipartite networks
Plant–soil feedbacks Ecosystem networks
Stoichiometry Soil microbe effects on soil structure

How do soil microbes contribute
to community resistance to
invasion or disturbance?

Feedback theory Patch model of microbial diversity
Adaptive feedback theory
Succession models

How does species diversity vs
species composition drive
ecosystem processes?

Portfolio theory Synergism between microorganisms
Species resource transport/
supply rates

Add higher order interactions

R�(resource complementarity)
What state variables produce
useful epidemiological models of
disease caused by soilborne
pathogens?

Areal dispersal Patch-based plant models
Abiotic predictors Metapopulation models
Contact spread Individual-based models
Population dynamics Moment closure models
Ecological Network Analysis

How do tri-trophic interactions
alter relationships between
microbes and plants?

Population dynamics Incorporate spatial structure

How common are trophic cascades
in soil food webs?

Stoichiometry Add third trophic level
Add connections between consumers
of mycorrhizal and saprotrophic
fungi
Ecosystem networks and Ecological
Network Analysis
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(Table 1. Continued.)

Area Example Questions Examples of Theory Used Potential Theoretical Approaches

What is the relative importance of
abiotic gradients to community
structure?

General Environmental
Gradients

Model the effect of incorporating
specific soil organisms

Climate change (e.g., G’DAY
model)

Model the effect of specific gradients
(instead of general) on soil organisms

Gradient models Model how exogenous variability
influences coexistence

Biodiversity/rarity Extinction models
Populations What are the implications of the

foraging decisions of plants in
soils?

Optimal foraging theory 3d cellular automata
Allometry 3d branching process model
Stoichiometry Model how biota affect scale of

foraging/foraging decisions
Root architecture NetLogo (type of individual based)

models
Game theory
Neighborhood models

How do root exudates and
rhizosphere gradients affect soil
structure?

Markov Chain Monte Carlo Add temporal structure to patch
dynamic models

How do soil organisms move
through soil?

Source–sink models Partial differential equation models
Neighborhood models Random walk models

Processes
Decomposition What are the relative strengths of

abiotic vs biotic controls on
decomposition?

CENTURY/DAYCENT Model feedback and serial loops
between discrete pools or across a
continuum of states

What is the relative contribution of
symbiotic and non-symbiotic
organisms to decomposition?

Simplified CENTURY Analytically tractable simplifications
Plant–microbe competition for
nutrients
Spatial variation of
stoichiometry
MEND, CORPSE, MIMICS,
SuMMS
Social dynamics in and
individual-based models

Aggregate
formation

How does the aboveground–
belowground biotic community
influence soil structure/aggregate
formation?

Pedogenesis Structured models (e.g., spatially
structured, biochemically structured,
or multi-component models)

How does soil physical structure/
aggregate formation affect
restoration efforts?

Dynamical models

How does aggregate structure
influence decomposer and
microbial communities?

Network topology
Saturated flow models

Nutrient
Cycling

How does soil community
structure/AG community
influence N cycling?

GPFARM-Range model Ecosystem network modeling of
trophic transfers

Discrete model of
heterogeneity

Metapopulations of nitrogen

Equilibrium Chemistry
Approximation

Effect of background stoichiometry on
discrete nitrogen pools (analogous to
chemotaxis in individual microbes)

How do structures of soil
community and AG community
influence C storage?

GPFARM-Range model Spatial heterogeneity in carbon pools
Linear ODE models
SWIM
CENTURY

How do interactions between
decomposers and plants influence
nutrient cycles and carbon
decomposition?

Nutrient cycle models Ecological Network AnalysisGraph
theory

Spatiotemporal dynamics Graph theory
Finite difference models combining
continuous nutrient diffusion with
discrete animals and plants
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decomposition dynamics to understand field-
level patterns such as CENTURY (Parton et al.
1987, 1993) and other ecosystem models (Agren
and Bosatta 1998). A great deal more work is
needed in this area (as identified in Table 1).
Models can also be run for significantly longer
time periods than experiments. Thus, mathemati-
cal models can provide insights into soil systems
that experimental work cannot and offer testable
predictions which may help focus the direction
of future experimental work.

Second, mathematical models may be used to
test whether hypothesized mechanisms in a sys-
tem are plausible. A model is constructed and
then confronted with data from a natural system.
If a model predicts effects seen in nature, either
accurately or by capturing key features of the
system, then we have evidence that the assump-
tions of the model (and our understanding of the
mechanisms that led to these assumptions) are a
plausible approximation of the system. For
example, Allison and Folse (Allison 2005, Folse
and Allison 2012) produced a population model
that assumed decomposers can be relatively
altruistic in the sense that they produce extracel-
lular enzymes from which, at high rates of

enzyme production, competitors may benefit.
They then built a model of decomposition (as
opposed to populations of decomposers) incor-
porating this assumption, which predicted how
nutrient supply and diffusion rate would alter
decomposition rates. The output of this model
was then compared to a system in Hawaii, and
the model explained a relatively large amount of
observed variation in litter decomposition
(Allison 2012). Thus, we can conclude that the
assumption that decomposer production of
extracellular enzymes is altruistic is plausible
(i.e., it is not inconsistent with these observa-
tions). As a result, we now have a better under-
standing of decomposition systems (likely to be
composed of altruistic organisms) than if model-
ing had not been applied to describe the activity
of soil decomposers. There is a growing empha-
sis in microbial and soil ecology on linking exper-
imental and modeling efforts (Widder et al.
2016).
Third, mathematical models can help us iden-

tify the most influential (and hence most impor-
tant to measure or control) variables in an
experimental or natural system. Many processes
in soil (e.g., nutrient cycles) are complex, but can

(Table 1. Continued.)

Area Example Questions Examples of Theory Used Potential Theoretical Approaches

Evolution
Co-evolution How does co-evolution between

plants and soil organisms
influence ecosystem processes
and community dynamics?

Recycling loops Geographic mosaic theory

Can evolution of soil organisms
influence the speed of soil
processes?

Adaptive dynamics
Food web models
Genomic models

Mutualisms What mechanisms stabilize free-
living soil mutualisms (e.g.,
mycorrhizal fungi, rhizobia)?

Game theory Population dynamics

How does bargaining for resource
exchange affect population
dynamics?

Biological market models Modular models

How does nutrient exchange
between mutualistic partners
influence nutrient cycling?

Stoichiometry Network modeling
Partner choice Topology altering evolutionary

dynamics
Population dynamics Uncertainty in link strength
Stoichiometry

Trade-offs What selection trade-offs occur
within soil systems?

Population dynamics
Modular models
Uncertainty in link strength

Notes: The abbreviation AG refers to aboveground. Some of the terms used may seem alien to pure empiricists, but they are
intended to provide useful key words as a starting point for seeking further information. The full table, including references
with examples of these approaches, is presented in the Appendix S1: Table S1.
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strongly impact both above- and belowground
systems. Their complexity can make it difficult to
know which variables are the most important to
measure to understand a system or a process
outcome. For example, which variables should
we measure to assess the function or resilience of
soil microbial communities (Biggs et al. 2012,
Shade et al. 2012)? There are several such exam-
ples of model-based variable identification in dif-
ferent soil systems (Larsen et al. 2012). For
instance, mathematical modeling has been used
to predict when mutualistic mycorrhizal function
is likely to decline in agricultural systems and
has suggested that arbuscular mycorrhizal (AM)
fungal species number is likely the best variable
to measure in these systems to predict function
(Wyatt et al. 2014). Modeling processes can also
allow us to determine how resilient or sensitive
soils and soil communities are to change (Brad-
ford and Fierer 2012). For example, a recent mod-
eling approach has shown that the extent of past
disturbance in a soil system can influence current
responses to environmental change: The more
change a community has experienced in the past,
the more resilient it will be in the face of new
environmental change (Hawkes and Keitt 2015).
Thus, the best predictor of responses to environ-
mental change is degree of past disturbance, and
this would be the variable to measure in future
studies. As a result, mathematical models can
shine light into the soil black box by guiding our
assessment of soil systems.

The use of mathematical models to affirm or
construct new hypotheses about soil processes,
identify how soil organisms function and inter-
act, or identify indicator variables to measure in
order to assess soil systems will enable us to
increase, and may even lead to step changes in,
our understanding of soil systems. As the
selected examples demonstrate, mathematical
modeling has already improved our knowledge
of soil systems, and if further employed in this
field, they could address a number of important
unanswered questions.

PATHS FOR INCREASING THE FUTURE POTENTIAL
OF MATHEMATICAL MODELS IN SOIL ECOLOGY

The exemplars described above clearly demon-
strate how modeling increases the understanding
of soil systems. The philosophy of how to build a

good model and practicalities of model construc-
tion have been extensively addressed (Levins
1966, Weisberg 2006, Pickett et al. 2007, Servedio
et al. 2014). To challenge scientists and modelers
to push theoretical explorations beyond the exam-
ples above, we have developed a comprehensive
table organized by biological questions within
areas of study (elucidated below) with current and
potential modeling approaches which may be use-
ful tools with which to build such models (Table 1;
Appendix S1: Table S1). Further, here we suggest
possible starting points and future directions that
may promote greater incremental developments
or even revolutionary changes for our understand-
ing of soil ecology. We categorize these possible
starting points and future directions into those
which test plausible mechanisms, inform about
experimentally intractable systems, and identify
variables to measure.
The first possible starting point for even

greater incorporation of mathematical modeling
into soil ecology is the testing of plausible mech-
anisms. Experimental investigations can reveal
different patterns and results in soil biology;
however, there may be a suite of possibilities for
the interactions behind these patterns and results
and mathematical modeling is a useful tool for
testing the plausibility of these candidate mecha-
nisms. The manner in which soil microbes affect
plant community dynamics is an important open
question. Some mathematical models have
begun to address this (i.e., resource ratio theory,
Cherif and Loreau 2007; R�, Tilman 1990; plant–
soil feedbacks, Bever 1999; and stoichiometry,
Miller et al. 2004), but important details remain
unaddressed. We argue that combining two of
these approaches (resource ratio theory and feed-
backs) to model the abiotic and biotic factors that
influence plant communities will help elucidate
the mechanisms by which soil influences plant
communities. Another example is fitness trade-
offs, which are thought to be an important con-
straint on trait evolution in aboveground organ-
isms. However, trait evolution within soil
systems has rarely been modeled, and fitness
trade-offs are particularly poorly explored. We
propose that applying population dynamic mod-
els (Bever 1999, Caruso and Rillig 2011) or modu-
lar models could advance understanding of
evolution within soil systems by testing the plau-
sibility of such mechanisms.
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Experimentally intractable soil systems also
present excellent opportunities for increased
future applications of mathematical modeling.
Using geographic mosaic theory, which argues
that natural selection varies along a spatial
mosaic of patches in which the selection and/or
direction of selection varies (Piculell et al. 2008,
Andonian et al. 2012), to model soil systems
could increase our understanding of co-evolution
in a wide array of species interactions in soil.
Finite difference models, which are discretization
schemes for solving reaction–diffusion type
problems and frequently applied in engineering
(Abadi and Rahimian 2018, Carrino et al. 2019),
geosciences (Shen et al. 2018, Han and Yang
2019), ecology (Potter and Andresen 2002), and
evolution (Burgess et al. 2016), could be used to
model this theory. We specifically propose the
use of finite difference models that combine con-
tinuous nutrient diffusion with discrete plants
and organisms, and we feel this approach could
similarly revolutionize our understanding of
how decomposers and plants influence nutrient
cycles.

Finally, soil systems are complex and unpacking
that complexity is a challenge, but mathematical
modeling is a useful tool for identifying key areas
of influence. For many reasons, nitrogen cycling is
one of the most important processes to understand
in soil systems, and previous models explored
how soil and plant communities influence this
cycle (e.g., GPFARM–Range model; Qi et al. 2012;
and a discrete model of heterogeneity, Boswell
et al. 2007). We propose that extending current
models to metapopulation models of nitrogen
would help to link precise points within this cycle
to processes of interest. Further, network models
could be used to determine the relative importance
of coupling among the biogeochemical processes
in the nitrogen cycle and determine the species
controlling dynamics, similar to efforts in estuarine
systems (Hines et al. 2015, 2016). The nitrogen
cycle is just one of the complex processes hamper-
ing our ability to predict how belowground organ-
isms will influence global change, and a number
of models have been developed to help make these
predictions (Rastetter et al. 1991). However, apply-
ing biophysical species range models to soil organ-
isms (Kearney and Porter 2009) could help to
identify which soil organisms predict change and
are therefore most important to track over time.

The areas of study used to structure Table 1
are hierarchy/scale, processes, and evolution.
Despite the importance of such questions, theory
in soil systems has rarely addressed how changes
at one hierarchical level or spatial scale influence
changes at another. For example, the majority of
papers (including those in Table 1) focus on a
single ecological hierarchical level such as popu-
lations. Hierarchies could be spanned by incor-
porating the production economy of mutualisms
into mathematical models, and multiple spatial
scales could be modeled using patch-based mod-
els, to add structure to existing models (see Com-
munities in Table 1). Strategic models could also
provide qualitative predictions that could be
tested across multiple systems, thereby moving
beyond simple observations of how interactions
between soil organisms produce soil processes.
There are also excellent opportunities to iden-

tify when, in soils, variation in spatial and tem-
poral factors is important. Spatial and temporal
gradients in the availability of root exudates pro-
vide illustrative examples (Table 1). Neighbor-
hood models identified how nematodes and a
fungal pathogen responded to patterns in rhizo-
sphere gradients (Anderson et al. 1997, Feltham
et al. 2002, Gosme et al. 2013). However, patch
dynamic and partial differential equation models
could not only further our understanding of
these patterns, but could also be applied to a
wider range of gradients (Table 1).
Theory is also needed to address how organ-

isms that vary in relative size (e.g., microbes vs.
macrofauna) interact with each other. For exam-
ple, how common are trophic cascades in soil
food webs (Table 1)? Do belowground trophic
cascades follow the same rules as aboveground
trophic cascades? Are the scale differences
among organisms proportional to the scale dif-
ferences observed among aboveground organ-
isms—and does this influence the outcome of
trophic cascades?
The second section of the table sets out ques-

tions about major processes in soils, focused on
ecosystem functions (such as decomposition,
aggregate formation, and nutrient cycling).
Many of these processes remain a black box, into
which we believe theory and modeling will be
particularly illuminating. For example, we are
still struggling to understand the interplay of
biotic and abiotic controls of decomposition. The
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development of detailed but complex predictive
models such as CENTURY (Parton et al. 1987,
1993) has expanded our understanding of this
process, yet many unanswered questions remain.
We propose that combining several analytically
tractable but simpler models can incorporate
multiple dynamics without adding too much
model complexity (see Table 1; Forney and
Rothman 2014). The power of this approach was
illustrated by recent Earth System Models of
global carbon cycles that, for the first time,
explicitly incorporated microbial communities.
These models revealed the importance of micro-
bial processes, especially in scenarios with
changing environmental conditions (Wieder
et al. 2013). We hope questions in Table 1 will
serve as a starting point for developing models
of processes that directly link with ecosystem
services.

The role of natural selection has rarely been
explored in modeling of soil systems, particu-
larly outside mutualistic and pathogenic interac-
tions. A great deal of evolutionary theory has
focused on nutritional mutualisms and host–
pathogen interactions (see under evolution in
Table 1), but for most soil processes (e.g., preda-
tion, decomposition), we know very little about
the effects of natural selection on soil organisms
(Lambers et al. 2009). However, broad brush
evolution experiments show that soil systems
can adapt to selection pressures in ways that
influence plant traits (Bonte et al. 2010, Lau and
Lennon 2012, Panke-Buisse et al. 2015). Can
changes in land management select for genetic
change in bacteria or fungi, and what would be
the ecosystem-level implications of such trait
evolution? Such questions are more amenable to
study than ever before, particularly as next-gen-
eration sequencing technologies have increased
our ability to identify microbes in soil communi-
ties (Alivisatos et al. 2015). Bacterial populations,
in particular, have short generation times and
respond to selection relatively rapidly (Lau and
Lennon 2012, Panke-Buisse et al. 2015). Could
such evolutionary responses speed up or slow
down soil processes? We propose several model-
ing strategies that could be used to approach
these questions. These include network model-
ing, topology dynamics, uncertainty in link
strength analyses, geographic mosaic theory, and
adaptive dynamics (Table 1). To our knowledge,

most of these types of questions have never been
addressed empirically or theoretically.
The fields of soil ecology and plant–soil inter-

actions are exciting areas of new discovery for
both empiricists and mathematicians. Recent
advances in our ability to assess soil microbial
communities and identify both organisms and
functions provide exciting opportunities for
expanding conceptual and mathematical theory
and applying this theory to push boundaries in
our understanding of aboveground systems.
Soils present an incredible opportunity for
exploring a wide variety of questions (from
micro- to macro-scales and across systems). Here
we have focused on how mathematical modeling
can contribute to soil ecology, but there are also
opportunities for soil ecology to contribute to
mathematical modeling. This is a huge opportu-
nity that we have not discussed here. We encour-
age our fellow scientists to incorporate soil
systems into their theory and theory into their
soil systems to expand the boundaries of soil
science and biology as a whole.
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