320 research outputs found

    A calibrated UV-LED based light source for water purification and characterisation of photocatalysis

    Get PDF
    Photocatalysis has a potential to become a cost effective industrial process for water cleaning. One of the most studied photocatalysts is titanium dioxide which, as a wide band gap semiconductor, requires ultraviolet (UV) light for its photoactivation. This is at the wavelengths where the efficiency of present-day light emitting diodes (LEDs) decreases rapidly, which presents a challenge in the use of UV-LEDs for commercially viable photocatalysis. There is also a need for accurate photocatalysis measurement of remediation rates of water-borne contaminants for determining optimum exposure doses in industrial applications. In response to these challenges, this paper describes a UV-LED based photocatalytic test reactor that provides a calibrated adjustable light source and pre-defined test conditions to remove as many sources of uncertainty in photocatalytic analysis as possible and thereby improve data reliability. The test reactor provides a selectable intensity of up to 1.9 kW m-2 at the photocatalyst surface. The comparability of the results is achieved through the use of pre-calibration and control electronics that minimize the largest sources of uncertainty; most notably variations in the intensity and directionality of the UV light emission of LEDs and in LED device heating.</p

    Larkin-Ovchinnikov-Fulde-Ferrell state in quasi-one-dimensional superconductors

    Full text link
    The properties of a quasi-one-dimensional (quasi-1D) superconductor with {\it an open Fermi surface} are expected to be unusual in a magnetic field. On the one hand, the quasi-1D structure of the Fermi surface strongly favors the formation of a non-uniform state (Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state) in the presence of a magnetic field acting on the electron spins. On the other hand, a magnetic field acting on an open Fermi surface induces a dimensional crossover by confining the electronic wave-functions wave-functions along the chains of highest conductivity, which results in a divergence of the orbital critical field and in a stabilization at low temperature of a cascade of superconducting phases separated by first order transistions. In this paper, we study the phase diagram as a function of the anisotropy. We discuss in details the experimental situation in the quasi-1D organic conductors of the Bechgaard salts family and argue that they appear as good candidates for the observation of the LOFF state, provided that their anisotropy is large enough. Recent experiments on the organic quasi-1D superconductor (TMTSF)2_2ClO4_4 are in agreement with the results obtained in this paper and could be interpreted as a signature of a high-field superconducting phase. We also point out the possibility to observe a LOFF state in some quasi-2D organic superconductors.Comment: 24 pages+17 figures (upon request), RevTex, ORSAY-LPS-24109

    Discrete cilia modelling with singularity distributions

    Get PDF
    We discuss in detail techniques for modelling flows due to finite and infinite arrays of beating cilia. An efficient technique, based on concepts from previous ‘singularity models’ is described, that is accurate in both near and far-fields. Cilia are modelled as curved slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities along their centrelines, leading to an integral equation that can be solved using a simple and efficient discretisation. The computed velocity on the cilium surface is found to compare favourably with the boundary condition. We then present results for two topics of current interest in biology. 1) We present the first theoretical results showing the mechanism by which rotating embryonic nodal cilia produce a leftward flow by a ‘posterior tilt,’ and track particle motion in an array of three simulated nodal cilia. We find that, contrary to recent suggestions, there is no continuous layer of negative fluid transport close to the ciliated boundary. The mean leftward particle transport is found to be just over 1 μm/s, within experimentally measured ranges. We also discuss the accuracy of models that represent the action of cilia by steady rotlet arrays, in particular, confirming the importance of image systems in the boundary in establishing the far-field fluid transport. Future modelling may lead to understanding of the mechanisms by which morphogen gradients or mechanosensing cilia convert a directional flow to asymmetric gene expression. 2) We develop a more complex and detailed model of flow patterns in the periciliary layer of the airway surface liquid. Our results confirm that shear flow of the mucous layer drives a significant volume of periciliary liquid in the direction of mucus transport even during the recovery stroke of the cilia. Finally, we discuss the advantages and disadvantages of the singularity technique and outline future theoretical and experimental developments required to apply this technique to various other biological problems, particularly in the reproductive system

    A calibrated UV-LED based light source for water purification and characterisation of photocatalysis

    Get PDF
    Photocatalysis has a potential to become a cost effective industrial process for water cleaning. One of the most studied photocatalysts is titanium dioxide which, as a wide band gap semiconductor, requires ultraviolet (UV) light for its photoactivation. This is at the wavelengths where the efficiency of present-day light emitting diodes (LEDs) decreases rapidly, which presents a challenge in the use of UV-LEDs for commercially viable photocatalysis. There is also a need for accurate photocatalysis measurement of remediation rates of water-borne contaminants for determining optimum exposure doses in industrial applications. In response to these challenges, this paper describes a UV-LED based photocatalytic test reactor that provides a calibrated adjustable light source and pre-defined test conditions to remove as many sources of uncertainty in photocatalytic analysis as possible and thereby improve data reliability. The test reactor provides a selectable intensity of up to 1.9 kW m-2 at the photocatalyst surface. The comparability of the results is achieved through the use of pre-calibration and control electronics that minimize the largest sources of uncertainty; most notably variations in the intensity and directionality of the UV light emission of LEDs and in LED device heating.</p

    Application of phage display to high throughput antibody generation and characterization.

    Get PDF
    We have created a high quality phage display library containing over 1010 human antibodies and describe its use in the generation of antibodies on an unprecedented scale. We have selected, screened and sequenced over 38,000 recombinant antibodies to 292 antigens, yielding over 7,200 unique clones. 4,400 antibodies were characterized by specificity testing and detailed sequence analysis and the data/clones are available online. Sensitive detection was demonstrated in a bead based flow cytometry assay. Furthermore, positive staining by immunohistochemistry on tissue microarrays was found for 37% (143/381) of antibodies. Thus, we have demonstrated the potential of and illuminated the issues associated with genome-wide monoclonal antibody generation.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Effects of coastal urbanization on salt-marsh faunal assemblages in the northern Gulf of Mexico

    Get PDF
    Author Posting. © American Fisheries Society, 2014. This article is posted here by permission of American Fisheries Society for personal use, not for redistribution. The definitive version was published in Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 6 (2014): 89-107, doi:10.1080/19425120.2014.893467.Coastal landscapes in the northern Gulf of Mexico, specifically the Mississippi coast, have undergone rapid urbanization that may impact the suitability of salt-marsh ecosystems for maintaining and regulating estuarine faunal communities. We used a landscape ecology approach to quantify the composition and configuration of salt-marsh habitats and developed surfaces at multiple spatial scales surrounding three small, first-order salt-marsh tidal creeks arrayed along a gradient of urbanization in two river-dominated estuaries. From May 3 to June 4, 2010, nekton and macroinfauna were collected weekly at all six sites. Due to the greater abundance of grass shrimp Palaemonetes spp., brown shrimp Farfantepenaeus aztecus, blue crab Callinectes sapidus, Gulf Menhaden Brevoortia patronus, and Spot Leiostomus xanthurus, tidal creeks in intact natural (IN) salt-marsh landscapes supported a nekton assemblage that was significantly different from those in partially urbanized (PU) or completely urbanized (CU) salt-marsh landscapes. However, PU landscapes still supported an abundant nekton assemblage. In addition, the results illustrated a linkage between life history traits and landscape characteristics. Resident and transient nekton species that have specific habitat requirements are more likely to be impacted in urbanized landscapes than more mobile species that are able to exploit multiple habitats. Patterns were less clear for macroinfaunal assemblages, although they were comparatively less abundant in CU salt-marsh landscapes than in either IN or PU landscapes. The low abundance or absence of several macroinfaunal taxa in CU landscapes may be viewed as an additional indicator of poor habitat quality for nekton. The observed patterns also suggested that benthic sediments in the CU salt-marsh landscapes were altered in comparison with IN or PU landscapes. The amount of developed shoreline and various metrics related to salt marsh fragmentation were important drivers of observed patterns in nekton and macroinfaunal assemblages

    Looking forward through the past: identification of 50 priority research questions in palaeoecology

    Get PDF
    1. Priority question exercises are becoming an increasingly common tool to frame future agendas in conservation and ecological science. They are an effective way to identify research foci that advance the field and that also have high policy and conservation relevance. 2. To date, there has been no coherent synthesis of key questions and priority research areas for palaeoecology, which combines biological, geochemical and molecular techniques in order to reconstruct past ecological and environmental systems on time-scales from decades to millions of years. 3. We adapted a well-established methodology to identify 50 priority research questions in palaeoecology. Using a set of criteria designed to identify realistic and achievable research goals, we selected questions from a pool submitted by the international palaeoecology research community and relevant policy practitioners. 4. The integration of online participation, both before and during the workshop, increased international engagement in question selection. 5. The questions selected are structured around six themes: human–environment interactions in the Anthropocene; biodiversity, conservation and novel ecosystems; biodiversity over long time-scales; ecosystem processes and biogeochemical cycling; comparing, combining and synthesizing information from multiple records; and new developments in palaeoecology. 6. Future opportunities in palaeoecology are related to improved incorporation of uncertainty into reconstructions, an enhanced understanding of ecological and evolutionary dynamics and processes and the continued application of long-term data for better-informed landscape management
    corecore